271 resultados para Graphical records
Resumo:
This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.
Resumo:
High-resolution climatic records of the late Holocene along the north-west African continental margin are scarce. Here we combine sediment grain size, elemental distribution and mineral assemblage data to trace dust and riverine sources at a shallow-marine sediment depocentre in the vicinity of the Senegal River mouth. The aim is to understand how these terrigenous components reflect climate variability during the late Holocene. Major element contents were measured and mineral identification was performed on three sub-fractions of our sediment core: (i) fluvial material <2 µm, (ii) aeolian material of 18-63 µm and (iii) a sub-fraction of dual-origin material of 2-18 µm. Results show that more than 80% of the total Al and Fe terrigenous bulk content is present in the fluviogenic fraction. In contrast, Ti, K and Si cannot be considered as proxies for one specific source off Senegal. The Al/Ca ratio, recording the continental river runoff, reveals two dry periods from 3010 to 2750 cal a BP and from 1900 to 1000 cal a BP, and two main humid periods from 2750 to 1900 cal a BP and from 1000 to 700 cal a BP. The match between (i) intervals of low river runoff inferred by low Al/Ca values, (ii) reduced river discharge inferred by integrated palynological data from offshore Senegal and (iii) periods of enhanced dune reactivation in Mali confirms this interpretation.
Resumo:
To explore cause and consequences of past climate change, very accurate age models such as those provided by the astronomical timescale (ATS) are needed. Beyond 40 million years the accuracy of the ATS critically depends on the correctness of orbital models and radioisotopic dating techniques. Discrepancies in the age dating of sedimentary successions and the lack of suitable records spanning the middle Eocene have prevented development of a continuous astronomically calibrated geological timescale for the entire Cenozoic Era. We now solve this problem by constructing an independent astrochronological stratigraphy based on Earth's stable 405 kyr eccentricity cycle between 41 and 48 million years ago (Ma) with new data from deep-sea sedimentary sequences in the South Atlantic Ocean. This new link completes the Paleogene astronomical timescale and confirms the intercalibration of radioisotopic and astronomical dating methods back through the Paleocene-Eocene Thermal Maximum (PETM, 55.930 Ma) and the Cretaceous-Paleogene boundary (66.022 Ma). Coupling of the Paleogene 405 kyr cyclostratigraphic frameworks across the middle Eocene further paves the way for extending the ATS into the Mesozoic.
Resumo:
[1] Planktonic d18O and Mg/Ca-derived sea surface temperature (SST) records from the Agulhas Corridor off South Africa display a progressive increase of SST during glacial periods of the last three climatic cycles. The SST increases of up to 4°C coincide with increased abundance of subtropical planktonic foraminiferal marker species which indicates a progressive warming due to an increased influence of subtropical waters at the core sites. Mg/Ca-derived SST maximizes during glacial maxima and glacial Terminations to values about 2.5°C above full-interglacial SST. The paired planktonic d18O and Mg/Ca-derived SST records yield glacial seawater d18O anomalies of up to 0.8 per mill, indicating measurably higher surface salinities during these periods. The SST pattern along our record is markedly different from a UK'37-derived SST record at a nearby core location in the Agulhas Corridor that displays SST maxima only during glacial Terminations. Possible explanations are lateral alkenone advection by the vigorous regional ocean currents or the development of SST contrasts during glacials in association with seasonal changes of Agulhas water transports and lateral shifts of the Agulhas retroflection. The different SST reconstructions derived from UK'37 and Mg/Ca pose a significant challenge to the interpretation of the proxy records and demonstrate that the reconstruction of the Agulhas Current and interocean salt leakage is not as straightforward as previously suggested.
Resumo:
During the mid-Pleistocene transition the dominant 41 ka periodicity of glacial cycles transitioned to a quasi-100 ka periodicity for reasons not yet known. This study investigates the potential role of deep ocean hydrography by examining oxygen isotope ratios in benthic foraminifera. Oxygen isotope records from the Atlantic, Pacific and Indian Ocean basins are separated into their ice volume and local temperature/hydrography components using a piece-wise linear transfer function and a temperature calibration. Although our method has certain limitations, the deep ocean hydrography reconstructions show that glacial deep ocean temperatures approached freezing point as the mid-Pleistocene transition progressed. Further analysis suggests that water mass reorganisation could have been responsible for these temperature changes, leading to such stable conditions in the deep ocean that some obliquity cycles were skipped until precessional forcing triggered deglaciation, creating the apparent quasi-100 ka pattern. This study supports previous work that suggests multiples of obliquity cycles dominate the quasi-100 ka glacial cycles with precession components driving deglaciations.
Resumo:
Die erneute moorkundlich-pollenanalytische Bearbeitung Nordfrieslands galt u.a. der Klärung folgender Fragen: 1. Sind die in größerer Entfernung von der Küste gewonnenen Erfahrungen über den Verlauf der Waldgeschichte der Nacheiszeit ohne weiteres auf die Marschen zu Übertragen? 2. Welche Einflüsse der Meeresüberflutungen auf die Entwicklung der Moore und ihrer Vegetation lassen sich feststellen ? 3. Wie ist der zeitliche Ablauf der postglazialen Meeresspiegelschwankungen in Nordfriesland, und ist es möglich, Fehldatierungen auszuschließen, welche durch Abtragung, Umlagerung oder Durchmischung der in das Marschprofil eingeschlossenen pollenführenden Moorschichten bedingt sind?
Resumo:
General global cooling over the Neogene has been modulated by changes in Earth's orbital parameters. Investigations of deep-sea sediment sequences show that various orbital cycles can dominate climate records for different latitudes or for different time intervals. However, a comprehensive understanding of astronomical imprints over the entire Neogene has been elusive because of the general absence of long, continuous records extending beyond the Pliocene. We present benthic foraminiferal d18O and d13C records over the past 23 Ma at Ocean Drilling Program Site 1148 in the northern South China Sea and construct an astronomically tuned timescale (TJ08) for these records based on natural gamma radiation and color reflectance data at this site. Our results show that a 41 ka cycle has dominated sediment records at this location over the Neogene, displaying a linear response to orbital forcing. A 100 ka cycle has also been significant. However, it is correlated nonlinearly with Earth's orbital variations at the 100 ka band. The sediment records also display a prominent 405 ka cycle. Although this cycle was coherent with orbital forcing during the Oligocene and the early Miocene, it was not coherent with Earth's orbital variations at the 405 ka band over the whole Neogene. Amplification of Northern Hemisphere and Southern Hemisphere glaciation since the middle Miocene may be responsible for this change in sedimentary response. Our benthic foraminifera d18O and d13C records further exhibit amplitude variations with longer periods of 600, 1000, 1200, and 2400 ka. Apparently, these cycles are nonlinear responses to insolation forcing.
Resumo:
Here we present a 1200 yr long benthic foraminiferal Mg/Ca based temperature and oxygen isotope record from a ~900 m deep sediment core off northwest Africa to show that atmosphere-ocean interactions in the eastern subpolar gyre are transferred at central water depth into the eastern boundary of the subtropical gyre. Further we link the variability of the NAO (over the past 165 yrs) and solar irradiance (Late Holocene) and their control on subpolar mode water formation to the multidecadal variability observed at mid-depth in the eastern subtropical gyre. Our results show that eastern North Atlantic central waters cooled by up to ~0.8± 0.7 °C and densities decreased by Sigma theta=0.3±0.2 during positive NAO years and during minima in solar irradiance during the Late Holocene. The presented records demonstrate the sensitivity of central water formation to enhanced atmospheric forcing and ice/freshwater fluxes into the eastern subpolar gyre and the importance of central water circulation for cross-gyre climate signal propagation during the Late Holocene.