259 resultados para 11,12-methylene-Hexadecanoic acid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediments of upwelling regions off Namibia, Peru, and Chile contain dense populations of large nitrate-storing sulfide-oxidizing bacteria, Thiomargarita, Beggiatoa, and Thioploca. Increased contents of monounsaturated C16 and C18 fatty acids have been found at all stations studied, especially when a high density of sulfide oxidizers in the sediments was observed. The distribution of lipid biomarkers attributed to sulfate reducers (10MeC16:0 fatty acid, ai-C15:0 fatty acid, and mono-O-alkyl glycerol ethers) compared to the distribution of sulfide oxidizers indicate a close association between these bacteria. As a consequence, the distributions of sulfate reducers in sediments of Namibia, Peru, and Chile are closely related to differences in the motility of the various sulfide oxidizers at the three study sites. Depth profiles of mono-O-alkyl glycerol ethers have been found to correlate best with the occurrence of large sulfide-oxidizing bacteria. This suggests a particularly close link between mono-O-alkyl glycerol ether-synthesizing sulfate reducers and sulfide oxidizers. The interaction between sulfide-oxidizing bacteria and sulfate-reducing bacteria reveals intense sulfur cycling and degradation of organic matter in different sediment depths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absolute configuration of the title acid (2) has been determined to be S by X-ray crystallography. Thus, decarboxylation of 2 produces (S)-(+)-halothane with 99% retention of configuration. This behavior is compared to other stereoselective decarboxylation reactions of ?-haloacids from the literature that also give high degrees of retention of configuration when in the form of their quaternary ammonium salts, which contain one proton. The proton of the ammonium salt is necessary to protonate the anionic intermediate formed from decarboxylation. In the absence of this relatively acidic proton, we had previously found that using triethylene glycol (TEG) as both solvent and proton source for the decarboxylation reaction of acid 2 caused poor stereoselectivity. This was in contrast to 1,2,2,2-tetrafluoro-1-methoxypropionic acid (6), which showed a high degree of retention of configuration in TEG. To rationalize this differing behavior we report DFT studies at PCM-B3LYP/6-31++G** level of theory (the results were additionally confirmed with 6-311++G** and aug-cc-pVDZ basis sets). The energy barrier to inversion of configuration of the anionic reaction intermediate of acid 2 (11) is 10.23 kcal/mol. However, we find that the anionic intermediate from acid 6 (10) would rather undergo ?-elimination instead of inversion of configuration. Thus the planar transition state required for inversion of configuration is never reached, regardless of the rate of proton transfer to the anion.