477 resultados para core-level
Resumo:
Analogous to West- and North Africa, East Africa experienced more humid conditions between approximately 12 to 5 kyr BP, relative to today. While timing and extension of wet phases in the North and West are well constrained, this is not the case for the East African Humid Period. Here we present a record of benthic foraminiferal assemblages and sediment elemental compositions of a sediment core from the East African continental slope, in order to provide insight into the regional shallow Indian Ocean paleoceanography and East African climate history of the last 40 kyr. During glacial times, the dominance of a benthic foraminiferal assemblage characterized by Bulimina aculeata, suggests enhanced surface productivity and sustained flux of organic carbon to the sea floor. During Heinrich Stadial 1 (H1), the Nuttallides rugosus Assemblage indicates oligotrophic bottom water conditions and therefore implies a stronger flow of southern-sourced AAIW to the study site. During the East African Humid Period, the Saidovina karreriana Assemblage in combination with sedimentary C/N and Fe/Ca ratios suggest higher river runoff to the Indian Ocean, and hence more humid conditions in East Africa. Between 8.5 and 8.1 kyr, contemporaneous to the globally documented 8.2 kyr Event, a severe reduction in river deposits implies more arid conditions on the continent. Comparison of our marine data with terrestrial studies suggests that additional moisture from the Atlantic Ocean, delivered by an eastward migration of the Congo Air Boundary during that time period, could have contributed to East African rainfall. Since approximately 9 kyr, the gaining influence of the Millettiana millettii Assemblage indicates a redevelopment of the East African fringe reefs.
Resumo:
The course of sea-level fluctuations during Termination II (TII; the penultimate deglaciation), which is critical for understanding ice-sheet dynamics and suborbital climate variability, has yet to be established. This is partly because most shallow-water sequences encompassing TII were eroded during sea-level lowstands of the last glacial period or were deposited below the present sea level. Here we report a new sequence recording sea-level changes during TII in the Pleistocene sequence at Hole M0005D (water depth: 59.63 m below sea level [mbsl]) off Tahiti, French Polynesia, which was drilled during Integrated Ocean Drilling Program Expedition 310. Lithofacies variations and stratigraphic changes in the taxonomic composition, preservation states, and intraspecific test morphology of large benthic foraminifers indicate a deepening-upward sequence in the interval from Core 310-M0005D-26R (core depth: 134 mbsl) through -16R (core depth: 106 mbsl). Reconstruction of relative sea levels, based on paleodepth estimations using large benthic foraminifers, indicated a rise in sea level of about 90 m during this interval, suggesting its correlation with one of the terminations. Assuming that this rise in sea level corresponds to that during TII, after correcting for subsidence since the time of deposition, a highstand sea-level position would be 2 ± 15 m above present sea level (masl), which is generally consistent with highstand sea-level positions in MIS 5e (4 ± 2 masl). If this rise in sea level corresponds to that during older terminations, the subsidence-corrected highstand sea-level positions (30 ± 15 masl for Termination III and 54 ± 15 masl for Termination IV) are not consistent with reported ranges of interglacial sea-level highstands (-18 to 15 masl). Therefore, the studied interval likely records the rise in sea level and associated environmental changes during TII. In particular, the intervening cored materials between the two episodes of sea-level rise found in the studied interval might record the sea-level reversal event during TII. This conclusion is consistent with U/Th ages of around 133 ka, which were obtained from slightly diagenetically altered (i.e., < 1% calcite) in situ corals in the studied interval (Core 310-M0005D-20R [core depth: 118 mbsl]). This study also suggests that our inverse approach to correlate a stratigraphic interval with an approximate time frame could be useful as an independent check on the accuracy of uranium-series dating, which has been applied extensively to fossil corals in late Quaternary sea-level studies.
Resumo:
The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Resumo:
Pollen and spores from a deep-sea core located west of the Niger Delta record an uninterrupted area of lowland rain forest in West Africa from Guinea to Cameroon during the last Interglacial and the early Holocene. During other periods of the last 150 ka, a savanna corridor between the western - Guinean - and the eastern - Congolian - part of the African lowland rain forest existed. This so-called Dahomey Gap had its largest extension during Glacial Stages 6, 4, 3, and 2. Reduced surface salinity in the eastern Gulf of Guinea as recorded by dinoflagellate cysts indicates sufficient precipitation for extensive forest growth during Stages 5 and 1. The large modern extension of dry forest and savanna in West Africa cannot be solely explained by climatic factors. Mangrove expansion in and west of the Niger Delta was largest during the phases of sea-level rise of Stages 5 and 1. During Stages 6, 4, 3, and 2, shelf areas were exposed and the area of the mangrove swamps was minimal.
Resumo:
At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.
Resumo:
Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ~19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ~16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture divergence over the West African realm, thereby extending the Sahel drought for about 4000 years.
Resumo:
It is well established that orbital scale sea-level changes generated larger transport of sediments into the deep-sea during the last glacial maximum than the Holocene. However, the response of sedimentary processes to abrupt millennial-scale climate variability is rather unknown. Frequency of distal turbidites and amounts of advected detrital carbonate are estimated off the Lisbon-Setúbal canyons, within a chronostratigraphy based on radiometric ages, oxygen isotopes and paleomagnetic key global anomalies. We found that: 1) Higher frequency of turbidites concurred with Northern Hemisphere coldest temperatures (Greenland Stadials [GS], including Heinrich [H] events). But more than that, an escalating frequency of turbidites starts with the onset of global sea-level rising (and warming in Antarctica) and culminates during H events, at the time when rising is still in its early-mid stage, and the Atlantic Meridional Overturning Circulation (AMOC) is re-starting. This short time span coincides with maximum gradients of ocean surface and bottom temperatures between GS and Antarctic warmings (Antarctic Isotope Maximum; AIM 17, 14, 12, 8, 4, 2) and rapid sea-level rises. 2) Trigger of turbidity currents is not the only sedimentary process responding to millennial variability; land-detrital carbonate (with a very negative bulk d18O signature) enters the deep-sea by density-driven slope lateral advection, accordingly during GS. 3) Possible mechanisms to create slope instability on the Portuguese continental margin are sea-level variations as small as 20 m, and slope friction by rapid deep and intermediate re-accommodation of water masses circulation. 4) Common forcing mechanisms appear to drive slope instability at both millennial and orbital scales.
Resumo:
During the past five million yrs, benthic d18O records indicate a large range of climates, from warmer than today during the Pliocene Warm Period to considerably colder during glacials. Antarctic ice cores have revealed Pleistocene glacial-interglacial CO2 variability of 60-100 ppm, while sea level fluctuations of typically 125 m are documented by proxy data. However, in the pre-ice core period, CO2 and sea level proxy data are scarce and there is disagreement between different proxies and different records of the same proxy. This hampers comprehensive understanding of the long-term relations between CO2, sea level and climate. Here, we drive a coupled climate-ice sheet model over the past five million years, inversely forced by a stacked benthic d18O record. We obtain continuous simulations of benthic d18O, sea level and CO2 that are mutually consistent. Our model shows CO2 concentrations of 300 to 470 ppm during the Early Pliocene. Furthermore, we simulate strong CO2 variability during the Pliocene and Early Pleistocene. These features are broadly supported by existing and new d11B-based proxy CO2 data, but less by alkenone-based records. The simulated concentrations and variations therein are larger than expected from global mean temperature changes. Our findings thus suggest a smaller Earth System Sensitivity than previously thought. This is explained by a more restricted role of land ice variability in the Pliocene. The largest uncertainty in our simulation arises from the mass balance formulation of East Antarctica, which governs the variability in sea level, but only modestly affects the modeled CO2 concentrations.
Resumo:
Over the Uruguayan shelf and uppermost slope the coalescence of northward flowing Subantarctic Shelf Water and southward flowing Subtropical Shelf Water forms a distinct thermohaline front termed the Subtropical Shelf Front (STSF). Running in a SW direction diagonally across the shelf from the coastal waters at 32°S towards the shelf break at ca. 36°S, the STSF represents the shelf-ward extension of the Brazil-Malvinas Confluence zone. This study reconstructs latitudinal STSF shifts during the Holocene based on benthic foraminifera d18O and d13C, total organic carbon, carbonate contents, Ti/Ca, and grain-size distribution from a high-accumulation sedimentary record located at an uppermost continental-slope terrace. Our data provide direct evidence for: (1) a southern STSF position (to the South of the core site) at the beginning of the early Holocene (>9.4 cal ka BP) linked to a more southerly position of the Southern Westerly Winds in combination with restricted shelf circulation intensity due to lower sea level; (2) a gradual STSF northward migration (bypassing the core site towards the North) primarily forced by the northward migration of the Southern Westerly Winds from 9.4 cal ka BP onwards; (3) a relatively stable position of the front in the interval between 7.2 and 4.0 cal ka BP; (4) millennial-scale latitudinal oscillations close to 36°S of the STSF after 4.0 cal ka BP probably linked to the intensification in El Niño Southern Oscillation; and (5) a southward migration of the STSF during the last 200 years possibly linked to anthropogenic influences on the atmosphere.
Resumo:
Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and sub-orbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea-surface temperature, X-ray fluorescence (XRF) core scanning and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29' N, 125°50' E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, whilst past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during Marine Isotope Stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.
Resumo:
The middle Miocene delta18O increase represents a fundamental change in earth's climate system due to a major expansion and permanent establishment of the East Antarctic Ice Sheet accompanied by some effect of deepwater cooling. The long-term cooling trend in the middle to late Miocene was superimposed by several punctuated periods of glaciations (Mi-Events) characterized by oxygen isotopic shifts that have been related to the waxing and waning of the Antarctic ice-sheet and bottom water cooling. Here, we present a high-resolution benthic stable oxygen isotope record from ODP Site 1085 located at the southwestern African continental margin that provides a detailed chronology for the middle to late Miocene (13.9-7.3 Ma) climate transition in the eastern South Atlantic. A composite Fe intensity record obtained by XRF core scanning ODP Sites 1085 and 1087 was used to construct an astronomically calibrated chronology based on orbital tuning. The oxygen isotope data exhibit four distinct delta18O excursions, which have astronomical ages of 13.8, 13.2, 11.7, and 10.4 Ma and correspond to the Mi3, Mi4, Mi5, and Mi6 events. A global climate record was extracted from the oxygen isotopic composition. Both long- and short-term variabilities in the climate record are discussed in terms of sea-level and deep-water temperature changes. The oxygen isotope data support a causal link between sequence boundaries traced from the shelf and glacioeustatic changes due to ice-sheet growth. Spectral analysis of the benthic delta18O record shows strong power in the 400-kyr and 100-kyr bands documenting a paleoceanographic response to eccentricity-modulated variations in precession. A spectral peak around 180-kyr might be related to the asymmetry of the obliquity cycle indicating that the response of the dominantly unipolar Antarctic ice-sheet to obliquityinduced variations probably controlled the middle to late Miocene climate system. Maxima in the delta18O record, interpreted as glacial periods, correspond to minima in 100-kyr eccentricity cycle and minima in the 174-kyr obliquity modulation. Strong middle to late Miocene glacial events are associated with 400-kyr eccentricity minima and obliquity modulation minima. Thus, fluctuations in the amplitude of obliquity and eccentricity seem to be the driving force for the middle to late Miocene climate variability.
Resumo:
Late Pleistocene sea level has been reconstructed from ocean sediment core data using a wide variety of proxies and models. However, the accuracy of individual reconstructions is limited by measurement error, local variations in salinity and temperature, and assumptions particular to each technique. Here we present a sea level stack (average) which increases the signal-to-noise ratio of individual reconstructions. Specifically, we perform principal component analysis (PCA) on seven records from 0-430 ka and five records from 0-798 ka. The first principal component, which we use as the stack, describes ~80 % of the variance in the data and is similar using either five or seven records. After scaling the stack based on Holocene and Last Glacial Maximum (LGM) sea level estimates, the stack agrees to within 5 m with isostatically adjusted coral sea level estimates for Marine Isotope Stages 5e and 11 (125 and 400 ka, respectively). When we compare the sea level stack with the d18O of benthic foraminifera, we find that sea level change accounts for about ~40 % of the total orbital-band variance in benthic d18O, compared to a 65 % contribution during the LGM-to-Holocene transition. Additionally, the second and third principal components of our analyses reflect differences between proxy records associated with spatial variations in the d18O of seawater.