426 resultados para Equatorial Guinea
Resumo:
Near-surface sediments from the equatorial east Atlantic and the Norwegian Sea exhibit pronounced shear strength maxima in profiles from the peak Holocene and Pleistocene. These semi-indurated layers start to occur at 8-102 cm below the sediment surface and can be explained neither by the modal composition nor by the effective overburden pressure of the sediments. However, scanning electron microscope and microprobe data exhibit micritic crusts and crystal carpets, which are clearly restricted to (undisturbed) samples from indurated layers and form a manifest explanation for their origin. The minerals precipitated comprise calcite, aragonite, and in samples more proximal to the African continent SiO2 needles, and needles of as yet unidentified K-Mg-Fe-Al silicates, crusts of which dominate the indurated layers in the Norwegian Sea. By their stratigraphic position in deep-sea sediments the carbonate-based shear strength maxima are tentatively ascribed to dissolved adjacent pteropod layers from the early Holocene and hence to short-lived no-analogue events of early diagenesis. Possibly, they have been controlled by a reduced organic carbon flux, leading to increased aragonite preservation in the deep sea.
Resumo:
This study addresses changes in the absolute magnitude and spatial geometry of particle flux and export production in a meridional transect across the central equatorial Pacific Ocean's upwelling system during oxygen isotope Stage 11 and Stage 12 and compares these time periods to the current Holocene interglacial system. Temporal and spatial variability in several chemical proxies of export production, and in particular the distributions of Ba, scavenged Al, and P, are studied in a suite of sediment cores gathered along a cross-equator transect at 5°S, 2°S, 0°, 2°N, and 4°N. Because this latitudinal range preserves strong gradients in biogenic particle flux in the modern equatorial Pacific Ocean, we are able to assess variations in the relative magnitude of export production as well as the meridional width of the equatorial system through the late Quaternary glacial/interglacial cycles. During interglacial oxygen isotope Stage 11 the chemical proxies each indicate lower particle flux and export production than during Stage 12. These records are consistent throughout the transect during this time period, but geographic narrowing (during the interglacial) and widening (during the glacial) of the meridional gradient also occurs. Although carbonate concentration varies dramatically through glacial/interglacial cycles at all latitudes studied, the productivity proxies record only minimal glacial/interglacial change at 5°S and 4°N, indicating that the carbonate minima at these latitudes is controlled dominantly by dissolution rather than production. The chemical data indicate that although the spatial geometry of the system during Stages 11 and 12 indicates maximum productivity at the equator during both glacial and interglacial conditions, the absolute magnitude of export production integrated from 5°S to 4°N during Stage 11 was 25-50% less than during Stage 12, and also was 25-50% less than it is now.
Resumo:
Neogene calcareous sediments were recovered at 11 sites along two north-south transects in the eastern equatorial Pacific Ocean during Ocean Drilling Program (ODP) Leg 138. An overview of planktonic foraminifer distribution in these sediments was presented in Mayer, Pisias, Janecek, et al. (1992) based on a preliminary examination of core-catcher samples. In general, the preservation state of the foraminifers is poor throughout most of the sedimentary sequences, making this microfossil group here of much less value for biostratigraphy than other microfossil groups. Pliocene-Pleistocene planktonic foraminifers from several sites have been analyzed in great detail for their oxygen and carbon isotope composition in various high-resolution studies (Farrell et al., this volume; Mix et al., this volume; Ravello et al., this volume; Shackleton et al., this volume). Planktonic foraminiferal datums of biostratigraphic value have been identified in several of these studies. This report presents planktonic foraminiferal distribution in selected Miocene sediments.
Resumo:
Glacial cooling (~1-5°C) in the eastern equatorial Pacific (EEP) cold tongue is often attributed to increased equatorial upwelling, stronger advection from the Peru-Chile Current (PCC), and to the more remote subpolar southeastern Pacific water mass. However, evidence is scarce for identifying unambiguously which process plays a more important role in driving the large glacial cooling in the EEP. To address this question, here we adopt a faunal calibration approach using planktic foraminifers with a new compilation of coretop data from the eastern Pacific, and present new downcore variation data of fauna assemblage and estimated sea surface temperatures (SSTs) for the past 160 ka (Marine Isotope Stage (MIS) 6) from ODP Site 1240 in the EEP. With significant improvement achieved by adding more coretop data from the eastern boundary current, our downcore calibration results indicate that most of the glacial cooling episodes over the past 160 ka in the EEP are attributable to increased influence from the subpolar water mass from high latitudes of the southern Pacific. By applying this new calibration of the fauna SST transfer function to a latitudinal transect of eastern Pacific (EP) cores, we find that the subpolar water mass has been a major dynamic contributor to EEP cold tongue cooling since MIS 6.
Resumo:
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.
Resumo:
The (231Pa/230Th)xs,0 records obtained from two cores from the western (MD97-2138; 1°25'S, 146°24'E, 1900 m) and eastern (ODP Leg 138 Site 849, 0°11.59'N, 110°31.18'W, 3851 m) equatorial Pacific display similar variability over the last 85000 years, i.e. from isotopic stages 1 to 5a, with systematically higher values during the Holocene, isotopic stage 3 and isotopic stage 5a, and lower values, approaching the production rate ratio of the two isotopes (0.093), during the colder periods corresponding to isotopic stages 2 and 4. We have also measured the 230Th-normalized biogenic preserved and terrigenous fluxes, as well as major and trace elements concentrations, in both cores. The (231Pa/230Th)xs,0 results combined with the changes in preserved carbonate and opal fluxes at the eastern site indicate lower productivity in the eastern equatorial Pacific during glacial periods. The (231Pa/230Th)xs,0 variations in the western equatorial Pacific (WEP) also seem to be controlled by productivity (carbonate and/or opal). The generally high (231Pa/230Th)xs,0 ratios (>0.093) of the profile could be due to opal and/or MnO2 in the sinking particles. The profiles of (231Pa/230Th)xs,0 and 230Th-normalized fluxes indicate a decrease in exported carbonate, and possibly opal, during isotopic stages 2 and 4 in MD97-2138. Using 230Th-normalized flux, we also show that sediments from the two cores were strongly affected by sediment redistribution by bottom currents suggesting a control of mass accumulation rates by sediment focusing variability.
Resumo:
During the early Pliocene warm period (~4.6-4.2 Ma) in the Eastern Equatorial Pacific upwelling region, sea surface temperatures were warm in comparison to modern conditions. Warm upwelling regions have global effects on the heat budget and atmospheric circulation, and are argued to have contributed to Pliocene warmth. Though warm upwelling regions could be explained by weak winds and/or a deep thermocline, the temporal and spatial evolution of the equatorial thermocline is poorly understood. Here we reconstruct temporal and spatial changes in subsurface temperature to monitor thermocline depth and show the thermocline was deeper during the early Pliocene warm period than it is today. We measured subsurface temperature records from Eastern Equatorial Pacific ODP transect Sites 848, 849, and 853 using Mg/Ca records from Globorotalia tumida, which has a depth habitat of ~50-100 m. In the early Pliocene, subsurface temperatures were ~4-5°C warmer than modern temperatures, indicating the thermocline was relatively deep. Subsurface temperatures steeply cooled ~2-3°C from 4.8 to 4.0 Ma and continued to cool an additional 2-3°C from 4.0 Ma to present. Compared to records from other regions, the data suggests the pronounced subsurface cooling between 4.8 and 4.0 Ma was a regional signal related to restriction of the Isthmus of Panama, while continued cooling from 4.0 Ma to present was likely related to global processes that changed global thermocline structure. Additionally, the spatial evolution of the equatorial thermocline along a N-S transect across ODP Sites 853, 849 and 848 suggests an intensification of the southeast trades from the Pliocene to present. Large-scale atmospheric and oceanographic circulation processes link high and low latitude climate through their influence on equatorial thermocline source water regions and consequently the equatorial thermocline. Through these low latitude/high latitude linkages, changes in the equatorial thermocline and thermocline source water played an important role in the transition from the warm Pliocene to the cold Pleistocene.
Resumo:
In order to recognize the distribution of hydrothermal tracers south of the Azores, a series of cores has been sampled during the GEOFAR cruise. The distribution of the Mn concentrations shows that the hydrothermal influence is maximum within and to the north-west of the Lucky Strike segment. North of the East-Azores Fracture Zone the sediments are enriched in Ba which could be derived from different sources. The chemical composition of the interstitial water shows that water advection is limited. Mn, Cu, Ni fluxes evaluated in one site have increased during isotopic stages 4 and 2 and the deglaciation.