192 resultados para CONCENTRATION RATIO
Resumo:
Abstract Hydrocarbons in surface sediments were studied quantitatively and qualitatively in 18 stations along the coastline of Gabes Gulf in Tunisia. The results show that the total hydrocarbon levels vary along a wide range from 90 to 1,800 ppm. The GC-MS profiles of aliphatic hydrocarbons vary according to the stations and show that the hydrocarbons were derived from various sources. A special feature prevalent in several stations was identified: aliphatic hydrocarbons with distinctive chemical features. This includes a high abundance of even-numbered n-alkanes (n-C14 - n-C26, maximizing at n-C18, n-C20 and n-C22) and n-alk-1-enes (n-C14:1 - n-C24:1, maximizing at n-C16:1, n-C18:1, n-C20:1 and n-C22:1). This unusual predominance of even-numbered n-alkanes/alkenes is reported for the first time in the Gulf of Gabes and it thus contributes to the information on the rare occurrence of such distributions in the geosphere.
Resumo:
New osmium (Os) isotope and platinum group element (PGE) concentration data are used in conjunction with published 3He and Th isotope data to determine the relative proportions of lithogenic, extraterrestrial and hydrogenous iridium (Ir) in a Pacific pelagic carbonate sequence from the Ocean Drilling Program (ODP) Site 806 on the Ontong Java Plateau (OJP). These calculations demonstrate that lithogenic and extraterrestrial contributions to sedimentary Ir budget are minor, while hydrogenous Ir accounts for roughly 85% of the total Ir. Application of analogous partitioning calculations to previously reported data from a North Pacific red clay sequence (LL44-GPC3) yields very similar results. Total Ir burial fluxes at Site 806 and LL44-GPC3 are also similar, 45 and 30 pg/cm**2/kyr, respectively. Average Ir/3He and Ir/xs230Th_initial ratios calculated from the entire Site 806 data set are similar to those reported earlier for Pacific sites. In general, down-core profiles of Ir, 3He and xs230Th_initial, are not well correlated with one another. However, all three data sets show similar variance and yield sediment mass accumulation rate estimates that agree within a factor of two. While these results indicate that Ir concentration has potential as a point-paleoflux tracer in pelagic carbonates, Ir-based paleoflux estimates are likely subject to uncertainties that are similar to those associated with Co-based paleoflux estimates. Consequently, local calibration of Ir flux in space and time will be required to fully assess the potential of Ir as a point paleoflux tracer. Measured 187Os/188Os of the OJP sediments are systematically lower than the inferred 187Os/188Os of contemporaneous seawater and a clear glacial-interglacial 187Os/188Os variation is lacking. Mixing calculations suggest Os contributions from lithogenic sources are insufficient to explain the observed 187Os/188Os variations. The difference between the 187Os/188Os of bulk sediment and that of seawater is interpreted in terms of subtle contributions of unradiogenic Os carried by particulate extraterrestrial material. Down-core variations of 187Os/188Os with Pt/Ir and Os/Ir also point to contributions from extraterrestrial particles. Mixing calculations for each set of several triplicate analyses suggest that the unradiogenic Os end member cannot be characterized by primary extraterrestrial particles of chondritic composition. It is noteworthy that in efforts aimed at determining the effect of extraterrestrial contributions, 187Os/188Os of pelagic carbonates has greater potential compared to abundances of PGE. An attempt has been made for the first time to estimate sediment mass accumulation rates based on amount of extraterrestrial Os in the OJP samples and previously reported extraterrestrial Os flux. Throughout most of the OJP record, Os isotope-based paleoflux estimates are within a factor of two of those derived using other constant flux tracers. Meaningful flux estimates cannot be made during glacial maxima because the OJP sediments do not record the low 187Os/188Os reported previously. We speculate that this discrepancy may be related to focusing of extraterrestrial particles at the OJP, as has been suggested to explain down-core 3He variations.
Resumo:
Data on distribution of organic carbon and phenols near the top of Kandalaksha Gulf, one of the largest gulfs of the White Sea, are presented. Investigations carried out the port city of Kandalasksha indicate that bottom sediments of the area adjoining the port contain synthetic phenols and have elevated concentrations of organic carbon. But in general sediments of this part of the gulf have near-normal concentration and composition of both phenols and organic carbon. This indicates that ecological situation in this area remains near-optimal.
Resumo:
Two decades ago, Merrihue (1964) reported 3He/4He ratios of >10**-4 in ferromagnetic separates from a Pacific deep ocean red clay and concluded that the high ratio is due to extraterrestrial debris amounting to ~1% of the sediment. A decade later Krylov et al. (1973) compiled 3He/4He isotopic data on ocean sediments measured in the Soviet Union and observed that the 3He/4He ratio is generally higher in pelagic sediments where the sedimentation rate is lower. They suggested that the high 3He/4He ratio was attributable to extraterrestrial materials which were concentrated in slowly accumulating ocean floor. However, these important discoveries were almost completely neglected until we re-examined the problem. We have measured 39 sediments from 12 different sites, 10 sites from the western to central Pacific and two sites from the Atlantic Ocean. We find 3He/4He ratios >5 * 10**-5 for six sites, well above the values generally observed in common terrestrial materials. The very high 3He/4He ratio in the sediments is probably due to input of extraterrestrial materials. Input of stratospheric dust of <1 p.p.m., which corresponds to a fallout rate of ~2,000 tons per year, can explain the observation.
Resumo:
A method was developed to extract adenine nucleotides AMP, ADP, and ATP from marine macroalgal tissue to gain information on the cellular energy charge. Quantification was carried out by high performance liquid chromatography (HPLC). Three species from the rocky shore of the island of Helgoland (German Bight) were examined: Laminaria saccharina (Phaeophyta), Chondrus crispus (Rhodophyta), and Ulva lactuca (Chlorophyta). In L. saccharina and C. crispus, the adenylate energy charge (AEC) was determined in different thallus regions. AEC varied in relation to tissue age and function. Higher AEC values typically occurred in thallus regions with meristematic activity. Furthermore, L. saccharina and U. lactuca were exposed to UV-A and elevated UV-B radiation. The AEC was calculated and the maximal quantum yield of photosystem II (Fv/Fm) was determined as indicators for UV stress. In both species, the AEC remained at high values (0.72 ± 0.04), while Fv/Fm dropped rapidly. The results show that the photosynthesis of the phaeophyte is more resistant to UV radiation than the chlorophyte.