191 resultados para Atmospheric Circulation
Resumo:
High-resolution pollen and dinoflagellate cyst records from sediment core M72/5-25-GC1 were used to reconstruct vegetation dynamics in northern Anatolia and surface conditions of the Black Sea between 64 and 20 ka BP. During this period, the dominance of Artemisia in the pollen record indicates a steppe landscape and arid climate conditions. However, the concomitant presence of temperate arboreal pollen suggests the existence of glacial refugia in northern Anatolia. Long-term glacial vegetation dynamics reveal two major arid phases ~64-55 and 40-32 ka BP, and two major humid phases ~54-45 and 28-20 ka BP, correlating with higher and lower summer insolation, respectively. Dansgaard-Oeschger (D-O) cycles are clearly indicated by the 25-GC1 pollen record. Greenland interstadials are characterized by a marked increase in temperate tree pollen, indicating a spread of forests due to warm/wet conditions in northern Anatolia, whereas Greenland stadials reveal cold and arid conditions as indicated by spread of xerophytic biomes. There is evidence for a phase lag of ~500 to 1500 yr between initial warming and forest expansion, possibly due to successive changes in atmospheric circulation in the North Atlantic sector. The dominance of Pyxidinopsis psilata and Spiniferites cruciformis in the dinocyst record indicates brackish Black Sea conditions during the entire glacial period. The decrease of marine indicators (marine dinocysts, acritarchs) at ~54 ka BP and increase of freshwater algae (Pediastrum, Botryococcus) from 32 to 25 ka BP reveals freshening of the Black Sea surface water. This freshening is possibly related to humid phases in the region, to connection between Caspian Sea and Black Sea, to seasonal freshening by floating ice, and/or to closer position of river mouths due to low sea level. In the southern Black Sea, Greenland interstadials are clearly indicated by high dinocyst concentrations and calcium carbonate content, as a result of an increase in primary productivity. Heinrich events show a similar impact on the environment in the northern Anatolia/Black Sea region as Greenland stadials.
Resumo:
The terrigenous sediment proportion of the deep sea sediments from off Northwest Africa has been studied in order to distinguish between the aeolian and the fluvial sediment supply. The present and fossil Saharan dust trajectories were recognized from the distribution patterns of the aeolian sediment. The following timeslices have been investigated: Present, 6,000, 12,000 and 18,000 y. B. P. Furthermore, the quantity of dust deposited off the Saharan coast has been estimated. For this purpose, 80 surface sediment samples and 34 sediment cores have been analysed. The stratigraphy of the cores has been achieved from oxygen isotopic curves, 14C-dating, foraminiferal transfer temperatures, and carbonate contents. Silt sized biogenic opal generally accounts for less than 2 % of the total insoluble sediment proportion. Only under productive upwelling waters and off river mouths, the opal proportion exceeds 2 % significantly. The modern terrigenous sediment from off the Saharan coast is generally characterized by intensely stained quartz grains. They indicate an origin from southern Saharan and Sahelian laterites, and a zonal aeolian transport in midtropospheric levels, between 1.5 an 5.5 km, by 'Harmattan' Winds. The dust particles follow large outbreaks of Saharan air across the African coast between 15° and 21° N. Their trajectories are centered at about 18° N and continue further into a clockwise gyre situated south of the Canary Islands. This course is indicated by a sickle-shaped tongue of coarser grain sizes in the deep-sea sediment. Such loess-sized terrigenous particles only settle within a zone extending to 700 km offshore. Fine silt and clay sized particles, with grain sizes smaller than 10- 15 µm, drift still further west and can be traced up to more than 4,000 km distance from their source areas. Additional terrigenous silt which is poor in stained quartz occurs within a narrow zone off the western Sahara between 20° and 27° N only. It depicts the present dust supply by the trade winds close to the surface. The dust load originates from the northwestern Sahara, the Atlas Mountains and coastal areas, which contain a particularly low amount of stained quartz. The distribution pattern of these pale quartz sediments reveals a SSW-dispersal of dust being consistent with the present trade wind direction from the NNE. In comparison to the sediments from off the Sahara and the deeper subtropical Atlantic, the sediments off river mouths, in particular off the Senegal river, are characterized by an additional input of fine grained terrigenous particles (< 6 µm). This is due to fluvial suspension load. The fluvial discharge leads to a relative excess of fine grained particles and is observed in a correlation diagram of the modal grain sizes of terrigenous silt with the proportion of fine fraction (< 6 µm). The aeolian sediment contribution by the Harmattan Winds strongly decreased during the Climatic Optimum at 6,000 y. B. P. The dust discharge of the trade winds is hardly detectable in the deep-sea sediments. This probably indicates a weakened atmospheric circulation. In contrast, the fluvial sediment supply reached a maximum, and can be traced to beyond Cape Blanc. Thus, the Saharan climate was more humid at 6,000 y B. P. A latitudinal shift of the Harmattan driven dust outbreaks cannot be observed. Also during the Glacial, 18,000 y. B. P., Harmattan dust transport crossed the African coast at latitudes of 15°-20° N. Its sediment load increased intensively, and markedly coarser grains spread further into the Atlantic Ocean. An expanded zone of pale-quart sediments indicates an enhanced dust supply by the trade winds blowing from the NE. No synglacial fluvial sediment contribution can be recognized between 12° and 30° N. This indicates a dry glacial climate and a strengthened stmospheric circulation over the Sahelian and Saharan region. The climatic transition pahes, at 12, 000 y. B. P., between the last Glacial and the Intergalcial, which is compareable to the Alerod in Europe, is characterized by an intermediate supply of terrigenous particles. The Harmattan dust transport wa weaker than during the Glacial. The northeasterly trade winds were still intensive. River supply reached a first postglacial maximum seaward of the Senegal river mouth. This indicates increasing humidity over the southern Sahara and a weaker atmospheric circulation as compared to the glacial. The accumulation rates of the terrigenous silt proportion (> 6 µm) decrcase exponentially with increasing distance from the Saharan coast. Those of the terrigenous fine fraction (< 6 µm) follow the same trend and show almost similar gradients. Accordingly, also the terrigenous fine fraction is believed to result predominantly from aeolian transport. In the Atlantic deep-sea sediments, the annual terrigenous sediment accumulation has fluctuated, from about 60 million tons p. a. during the Late Glacial (13,500-18,000 y. B. P, aeolian supply only) to about 33 million tons p. a. during the Holocene Climatic Optimum (6,000-9,000 y. B. P, mainly fluvial supply), when the river supply has reached a maximum, and to about 45 million tons p. a. during the last 4,000 years B. P. (fluvial supply only south of 18° N).
Resumo:
Time-series of varve properties and geochemistry were established from varved sediments of Lake Woserin (north-eastern Germany) covering the recent period AD 2010-1923 and the Mid-Holocene time-window 6400-4950 varve years before present (vyr BP) using microfacies analyses, X-ray fluorescence scanning (µ-XRF), microscopic varve chronology and 14C dating. The microscopic varve chronology was compared to a macroscopic varve chronology for the same sediment interval. Calcite layer thickness during the recent period is significantly correlated to increases in local annual precipitation (r=0.46, p=0.03) and reduced air-pressure (r=-0.72, p<0.0001). Meteorologically consistent with enhanced precipitation at Lake Woserin, a composite 500 hPa anomaly map for years with >1 standard deviation calcite layer thickness depicts a negative wave train air-pressure anomaly centred over southern Europe, with north-eastern Germany at its northern frontal zone. Three centennial-scale intervals of thicker calcite layers around the Mid-Holocene periods 6200-5900, 5750-5400 and 5300-4950 vyr BP might reflect humid conditions favouring calcite precipitation through the transport of Ca2+ ions into Lake Woserin, synchronous to wetter conditions in Europe. Calcite layer thickness oscillations of about 88 and 208 years resemble the solar Gleissberg and Suess cycles suggesting that the recorded hydroclimate changes in north-eastern Germany are modified by solar influences on synoptic-scale atmospheric circulation. However, parts of the periods of thicker calcite layers around 5750-5400 and 5200 vyr BP also coincide to enhanced human catchment activity at Lake Woserin. Therefore, calcite precipitation during these time-windows might have further been favored by anthropogenic deforestation mobilizing Ca2+ ions and/or lake eutrophication.
Resumo:
Variations in the sediment input to the Namaqualand mudbelt during the Holocene are assessed using an integrative terrestrial to marine, source to sink approach. Geochemical and Sr and Nd isotopic signatures are used to distinguish fluvial sediment source areas. Relative to the sediments of the Olifants River, craton outcrops in the northern Orange River catchment have a more radiogenic Sr and a more unradiogenic Nd isotopic signature. Furthermore, upper Orange River sediments are rich in heavier elements such as Ti and Fe derived from the chemical weathering of Drakensberg flood basalt. Suspension load signatures change along the Orange River's westward transit as northern catchments contribute physical weathering products from the Fish and Molopo River catchment area. Marine cores offshore of the Olifants (GeoB8323-2) and Orange (GeoB8331-4) River mouths show pulses of increased contribution of Olifants River and upper Orange River input, respectively. These pulses coincide with intervals of increased terrestrial organic matter flux and increased paleo-production at the respective core sites. We attribute this to an increase in fluvial activity and vegetation cover in the adjacent catchments during more humid climate conditions. The contrast in the timing of these wet phases in the catchment areas reflects the bipolar behavior of the South African summer and winter rainfall zones. While rainfall in the Orange River catchment is related to southward shifts in the ICTZ, rainfall in the Olifants catchment is linked to northward shifts in Southern Hemisphere Westerly storm tracks. The later may also have increased southern Benguela upwelling in the past by reducing the shedding of Agulhas eddies into the Atlantic. The high-resolution records of latitudinal shifts in these atmospheric circulation systems correspond to late Holocene centennial-millennial scale climate variability evident in Antarctic ice core records. The mudbelt cores indicate that phases of high summer rainfall zone and low winter rainfall zone humidity (at ca. 2.8 and 1 ka BP) may be synchronous with Antarctic warming events. On the other hand, dry conditions in the summer rainfall zone along with wet conditions in the winter rainfall zone (at ca 3.3, 2 and 0.5 ka BP) may be associated with Antarctic cooling events.
Resumo:
The influence of atmospheric circulation patterns on sea salt aerosol deposition in the study area of the new EPICA (European Project for Ice Coring in Antarctica) deep drilling in Dronning Maud Land (DML), Antarctica, has been investigated. Comparison of ice core records with reanalysis data showed that recent sea salt concentrations are strongly influenced by the occurrence of a blocking high pressure ridge over the eastern and enhanced storm activity over the western Atlantic sector of the Southern Ocean (SO) leading to marine intrusions, thus enhanced sea salt export, into DML. These variations occur with periods of 4-5 and 12-14 yr, the prior being associated with the Antarctic Circumpolar Wave (ACW). The prevalence of these periodicities in a 2000 year ice core record from DML shows for the first time that the ACW is a prevalent feature of SO atmosphere dynamics over the last two millennia.
Resumo:
The Eurasian inland propagation of temperature anomalies during glacial millennial-scale climate variability is poorly understood but this knowledge is crucial to understanding hemisphere-wide atmospheric teleconnection patterns and climate mechanisms. Based on biomarkers and geochemical paleothermometers, a pronounced continental temperature variability between 64,000 and 20,000 years ago, coinciding with the Greenland Dansgaard-Oeschger cycles, was determined in a well-dated sediment record from the formerly enclosed Black Sea. Cooling during Heinrich events was not stronger than during other stadials in the Black Sea. This is corroborated by modeling results showing that regular Dansgaard-Oeschger cycles penetrated deeper into the Eurasian continent than Heinrich events. The pattern of coastal ice-rafted detritus suggests a strong dependence on the climate background state, with significantly milder winters during periods of reduced Eurasian ice sheets and an intensified meridional atmospheric circulation.
Resumo:
The dominant model of atmospheric circulation posits that hot air rises, creating horizontal winds. A second major driver has recently been proposed by Makarieva and Gorshkov in their biotic pump theory (BPT), which suggests that evapotranspiration from natural closed-canopy forests causes intense condensation, and hence winds from ocean to land. Critics of the BPT argue that air movement to fill the partial vacuum caused by condensation is always isotropic, and therefore causes no net air movement (Bunyard, 2015, hdl:11232/397). This paper explores the physics of water condensation under mild atmospheric conditions, within a purpose-designed square-section 4.8 m-tall closed-system structure. Two enclosed vertical columns are connected at top and bottom by two horizontal tunnels, around which 19.5 m**3 of atmospheric air can circulate freely, allowing rotary airflows in either direction. This air can be cooled and/or warmed by refrigeration pipes and a heating mat, and changes in airflow, temperature, humidity and barometric pressure measured in real time. The study investigates whether the "hot-air-rises" or an implosive condensation model can better explain the results of more than 100 experiments. The data show a highly significant correlation (R2 >0.96, p value <0.001) between observed airflows and partial pressure changes from condensation. While the kinetic energy of the refrigerated air falls short of that required in bringing about observed airflows by a factor of at least 30, less than a tenth of the potential kinetic energy from condensation is shown to be sufficient. The assumption that condensation of water vapour is always isotropic is therefore incorrect. Condensation can be anisotropic, and in the laboratory does cause sustained airflow.
Resumo:
Stable isotope data from eastern equatorial Pacific (EEP) core TR163-19 (2°15'N, 90°57'W, 2348 m) are presented for the surface-dwelling foraminifers Globigerinoides ruber and G. sacculifer and thermocline-dwelling Globorotalia menardii and Neogloboquadrina dutertrei. Using species-specific normalization factors derived from experimental and plankton tow data, we reconstruct a 360 kyr record of water column hydrography across the past three glacial cycles. We demonstrate that G. ruber maintains a mixed layer habitat throughout the entire record, while G. sacculifer records a mixture of thermocline and mixed layer conditions and G. menardii and N. dutertrei record thermocline properties. We conclude that G. sacculifer is not appropriate for paleoceanographic applications in regions with steep vertical hydrographic gradients. Results suggest that this region of the EEP had a thicker mixed layer and deeper d13CDIC boundary between the surface and equatorial undercurrent during the last two glacial periods. A shift in N. dutertrei and G. sacculifer geochemistry prior to ~185 kyr suggests water column structure and chemocline gradients changed, possibly due to a shift in the position of the undercurrent relative to this site. The timing and magnitude of glacial-interglacial d13C variations between species indicates that near-surface carbon chemistry is controlled by changes in productivity, atmospheric circulation, and advected intermediate water sources north of the Antarctic polar front. These results demonstrate that when properly calibrated for species differences, multispecies geochemical data sets can be invaluable for reconstructing water column structure and properties in the past.
Resumo:
Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ~1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater d18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.
Resumo:
Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.