649 resultados para Ammonia beccarii dextral, d13C
Resumo:
The thermal structure of the upper ocean (0-1000 m) is set by surface heat fluxes, shallow wind-driven circulation, and the deeper thermohaline circulation. Its long-term variability can be reconstructed using deep-dwelling planktonic foraminifera that record subsurface conditions. Here we used six species (Neogloboquadrina dutertrei, Globorotalia tumida, Globorotalia inflata, Globorotalia truncatulinoides, Globorotalia hirsuta, and Globorotalia crassaformis) from 66 core tops along a meridional transect spanning the mid-Atlantic (42°N to 25°S) to develop a method for reconstructing past thermocline conditions. We estimated the calcification depths from d18O measurements and the Mg/Ca-temperature relationships for each species. This systematic strategy over this large latitudinal section reveals distinct populations with different Mg/Ca-temperature relationships for G. inflata, G. truncatulinoides, and G. hirsuta in different areas. The calcification depths do not differ among the different populations, except for G. hirsuta, where the northern population calcifies much shallower than the southern population. N. dutertrei and G. tumida show a remarkably constant calcification depth independent of oceanographic conditions. The deepest dweller, G. crassaformis, apparently calcifies in the oxygen-depleted zone, where it may find refuge from predators and abundant aggregated matter to feed on. We found a good match between its calcification depth and the 3.2 ml/l oxygen level. The results of this multispecies, multiproxy study can now be applied down-core to facilitate the reconstruction of open-ocean thermocline changes in the past.
Resumo:
A record of carbon and oxygen isotopes in benthic and planktonic foraminifers has been obtained from the interval corresponding to the last 2.4 m.y. of Site 610, Holes 610 and 610A, with a sample resolution of about 30 kyr. The record from the late Quaternary (<0.9 Ma) shows large amplitudes and high frequencies in oxygen isotopic variation. Prior to 0.9 Ma the isotopic variability record is reduced in amplitude (but not in frequency) compared with the late Quaternary, suggesting lower ice-volume and climatic fluctuations, and higher average eustatic sea level. Left-coiling (L, polar) Neogloboquadrinapachyderma were not found in samples between 1.0 and 2.2 Ma, indicating less influence of polar front migrations in the Northeast Atlantic. Both polar planktonic faunas and larger isotope fluctuations reappear in the lowermost samples (2.3 to 2.4 Ma), pointing toward a period of larger climatic variability in the late Pliocene than in the early Quaternary. The variation in benthic d13C and hence in deep-water d13C seems to have been constant through the analyzed section, reflecting a stable variability in the production of North Atlantic Deep Water (NADW) and possibly in Norwegian-Greenland Sea Overflow. Preliminary analyses of amino-acid epimerization in N. pachyderma (L) indicate a constant rate of epimerization to approximately 0.3 Ma. Beneath this level the average epimerization rate is much reduced.