205 resultados para 1038-1
Resumo:
The 87Sr/86Sr ratio of ancient seawater, as recorded in marine carbonates, is an important tracer of long-term variations in ocean chemistry (Burke et al., 1982, doi:10.1130/0091-7613(1982)10<516:VOSSTP>2.0.CO;2; Peterman et al., 1970, doi:10.1016/0016-7037(70)90154-7; Dasch and Biscaye, 1971, doi:10.1016/0012-821X(71)90164-6; Veizer and Compston, 1974, doi:10.1016/0016-7037(74)90099-4; Brass, 1976, doi:10.1016/0016-7037(76)90025-9). However, the Sr isotope balance of the oceans has been difficult to constrain; consequently, attempts to evaluate the temporal 87Sr/86Sr changes have been largely qualitative. To constrain the causes of these variations we have measured 87Sr/86Sr ratios in carefully cleaned unrecrystallized foraminifera from DSDP sites 21 and 357. The data presented here have been quantitatively modelled taking advantage of recent advances in understanding of the Sr geochemical cycle. They suggest that whereas hydrothermal fluxes and carbonate recycling are of major importance in defining the marine 87Sr/86Sr ratio, the major control over its variations through the Cenozoic has been changes in the isotope composition of Sr derived from the weathering of silicate rocks.
Resumo:
THE magnetic properties of the basalts which form layer 2 of the oceanic lithosphere are important because of their relevance to the hypothesis (Vine and Matthews, 1963, doi:10.1038/199947a0) of seafloor spreading. Most studies of these magnetic properties have been carried out on basalts obtained from dredge hauls taken predominantly from ocean ridge systems and fracture zones. These constitute special areas of the oceanic crust where the sediment cover is negligible. It is of interest to compare the magnetic properties of the dredged basalts with samples recovered from holes drilled through the overlying sediments into the basaltic layer at places distant from ridge axes. Samples obtained from the abandoned Mohole project and, more recently, from the Deep Sea Drilling Project (DSDP) possessed magnetic properties similar to those of dredged basalts (Cox and Doell, 1962, doi:10.1029/JZ067i010p03997; Lowrie et al., 1973, doi:10.1016/0012-821X(73)90198-2). Here I describe highly unstable magnetic characteristics found in basalts from DSDP hole 57.
Resumo:
Study of cores taken from the north-eastern Mediterranean during cruise 4/72 of the RRV Shackleton, using a Lehigh 4-inch hydroplastic gravity corer and containing layered organic structures encrusted with either manganese or iron minerals.
Resumo:
Two decades ago, Merrihue (1964) reported 3He/4He ratios of >10**-4 in ferromagnetic separates from a Pacific deep ocean red clay and concluded that the high ratio is due to extraterrestrial debris amounting to ~1% of the sediment. A decade later Krylov et al. (1973) compiled 3He/4He isotopic data on ocean sediments measured in the Soviet Union and observed that the 3He/4He ratio is generally higher in pelagic sediments where the sedimentation rate is lower. They suggested that the high 3He/4He ratio was attributable to extraterrestrial materials which were concentrated in slowly accumulating ocean floor. However, these important discoveries were almost completely neglected until we re-examined the problem. We have measured 39 sediments from 12 different sites, 10 sites from the western to central Pacific and two sites from the Atlantic Ocean. We find 3He/4He ratios >5 * 10**-5 for six sites, well above the values generally observed in common terrestrial materials. The very high 3He/4He ratio in the sediments is probably due to input of extraterrestrial materials. Input of stratospheric dust of <1 p.p.m., which corresponds to a fallout rate of ~2,000 tons per year, can explain the observation.
Resumo:
The late Miocene carbon shift (~6.2 Myr) -a 0.5-1.0 per mil, d13C decrease in benthic and planktonic foraminifera- has been ascribed to changes in global inventory, deep-ocean circulation, and/or productivity. Cadmium, d13C, and nutrients in the ocean are linked; comparison of d13C and Cd/Ca yields circulation and chemical inventory information not available from either alone. We determined Cd/Ca ratios in late Miocene benthic foraminifera from DSDP Site 289. Results include: (1) late Miocene Pacific Cd/Ca values fall between those of late Quaternary Atlantic and Pacific benthic foraminifera; (2) there are no systematic Cd/Ca offsets between Cibicidoides kullenbergi, Cibicidoides wuellerstorfi and Uvigerina spp.; and (3) there is a very slight Cd/Ca change coincident with d13C. Cd/Ca, slightly higher in younger, isotopically lighter samples, exhibits a smaller increase than predicted if circulation were the primary cause of the carbon shift. The carbon shift may have been due to a long-term shift in the steady-state carbon isotope input or to a change in the sedimentation of organic carbon relative to calcium carbonate.
Resumo:
At mid- to high-latitude marine sites, ice-rafted debris (IRD) is commonly recognized as anomalously coarse-grained terrigenous material contained within a fine-grained hemipelagic or pelagic matrix (e.g., Conolly and Ewing, 1970; Ruddiman, 1977, doi:10.1130/0016-7606(1977)88<1813:LQDOIS>2.0.CO;2; Krissek, 1989, doi:10.2973/odp.proc.sr.104.114.1989; Jansen et al., 1990; Bond et al., doi:10.1038/360245a0, 1992; Krissek, 1995, doi:10.2973/odp.proc.sr.145.118.1995). The presence of such ice-rafted material is a valuable indicator of the presence of glacial ice at sea level on an adjacent continent, whereas the composition of the IRD can often be used to identify the location of the source area (e.g., Goldschmidt, 1995, doi:10.1016/0025-3227(95)00098-J). Because the amount of core recovered during Leg 163 was very limited, this shore-based, postcruise study focuses on materials recovered at a nearby site during Leg 152. In particular, this study examines sediments recovered at Site 919; these sediments were described as containing a significant ice-rafted component in the Leg 152 Initial Reports volume (Larsen, Saunders, Clift, et al., 1994, doi:10.2973/odp.proc.ir.152.1994). In this study, the sedimentary section from Site 919 has been examined with the goal of providing a detailed history of glaciations on Greenland and other landmasses adjacent to the Norwegian-Greenland Sea; this history ultimately will be calibrated using an oxygen isotope stratigraphy (Flower, 1998, doi:10.2973/odp.proc.sr.152.219.1998), although that calibration has not been completed at this time. Because ice-core studies of the Greenland Ice Sheet (GIS) have shown that the GIS changed dramatically, and in some cases extremely rapidly, during at least the last interglacial stage (GRIP Members, 1993, doi:10.1038/364203a0), a detailed IRD record from the Southeast Greenland margin should provide insight into the longer term behavior of this sensitive component of the Northern Hemisphere climate system.
Resumo:
Past sea-level records provide invaluable information about the response of ice sheets to climate forcing. Some such records suggest that the last deglaciation was punctuated by a dramatic period of sea-level rise, of about 20 metres, in less than 500 years. Controversy about the amplitude and timing of this meltwater pulse (MWP-1A) has, however, led to uncertainty about the source of the melt water and its temporal and causal relationships with the abrupt climate changes of the deglaciation. Here we show that MWP-1A started no earlier than 14,650 years ago and ended before 14,310 years ago, making it coeval with the Bølling warming. Our results, based on corals drilled offshore from Tahiti during Integrated Ocean Drilling Project Expedition 310, reveal that the increase in sea level at Tahiti was between 12 and 22 metres, with a most probable value between 14 and 18 metres, establishing a significant meltwater contribution from the Southern Hemisphere. This implies that the rate of eustatic sea-level rise exceeded 40 millimetres per year during MWP-1A.
Resumo:
A remarkable oxygen and carbon isotope excursion occurred in Antarctic waters near the end of the Palaeocene (~57.33 Myr ago), indicating rapid global warming and oceanographic changes that caused one of the largest deep-sea benthic extinctions of the past 90 million years. In contrast, the oceanic plankton were largely unaffected, implying a decoupling of the deep and shallow ecosystems. The data suggest that for a few thousand years, ocean circulation underwent fundamental changes producing a transient state that, although brief, had long-term effects on environmental and biotic evolution.
Resumo:
Oxygen isotope measurements in Greenland ice demonstrate that a series of rapid warm-cold oscillations -called Dansgaard-Oeschger events- punctuated the last glaciation (Dansgard et al., 1993, doi:10.1038/364218a0). Here we present records of sea surface temperature from North Atlantic sediments spanning the past 90 kyr which contain a series of rapid temperature oscillations closely matching those in the ice-core record, confirming predictions that the ocean must bear the imprint of the Dansgaard-Oeschger events (Broecker et al., 1988, doi:10.1016/0033-5894(88)90082-8; 1990, doi:10.1029/PA005i004p00469). Moreover, we show that between 20 and 80 kyr ago, the shifts in ocean-atmosphere temperature are bundled into cooling cycles, lasting on average 10 to 15 kyr, with asymmetrical saw-tooth shapes. Each cycle culminated in an enormous discharge of icebergs into the North Atlantic (a 'Hein-rich event' (Bond et al., 1992, doi:10.1038/360245a0; Broecker et al., 1992, doi:10.1007/BF00193540), followed by an abrupt shift to a warmer climate. These cycles document a previously unrecognized link between ice sheet behaviour and ocean-atmosphere temperature changes. An important question that remains to be resolved is whether the cycles are driven by external factors, such as orbital forcing, or by inter-nal ice-sheet dynamics.
Resumo:
The high-pressure, low-temperature metamorphic rocks known as blueschists have long been considered to form in subduction zones, where the descent of a relatively cold slab leads to the occurrence of unusually low temperatures at mantle pressures. Until now, however, the link between blueschist-facies rocks and subduction zones has been indirect, relying on a spatial association of blueschists with old subduction complexes, and estimates of the geothermal gradients likely to exist in subduction zones. Here we strengthen this link, by reporting the discovery of blueschist-facies minerals (lawsonite, aragonite, sodic pyroxene and blue amphibole) in clasts from a serpentinite seamount in the forearc of the active Mariana subduction zone. The metamorphic conditions estimated from the mineral compositions are 150-250 °C and 5-6 kbar (16-20 km depth). The rocks must have been entrained in rising serpentine mud diapirs, and extruded from mud volcanoes onto the sea floor. Further study of these rocks may provide new insight into the tectonics of trench-forearc systems, and in particular, the processes by which blueschist-facies clasts come to be associated with forearc sediments in ancient subduction complexes.