378 resultados para landfill gas emission measurements


Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular and isotopic measurements of gas and water obtained from a gas hydrate at Site 570, DSDP Leg 84, are reported. The hydrate appeared to be Structure I and was composed of a solid framework of water molecules enclosing methane and small amounts of ethane and carbon dioxide. Carbon isotopic values for the hydrate-bound methane, ethane, and carbon dioxide were -41 to about -44, -27, and -2.9 per mil, respectively. The d13C-C1 values are consistent with void gas values that were determined to have a biogenic source. A significant thermogenic source was discounted because of high C1/C2 ratios and because the d13C-CO2 values in these sections were also anomalously heavy (or more positive) isotopically, suggesting that the methane was formed biogenically by reduction of heavy CO2 . The isotopically heavy hydrate d13C-C2 is also similar to void gas isotopic compositions and is either a result of low-temperature diagenesis producing heavy C2 in these immature sediment sections or upward migration of deeper thermogenic gas. The salinity of the hydrate water was 2.6 per mil with dDH2O and d18OH2O values of +1 and +2.2 per mil, respectively.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

During the austral summer expedition PS81, ANT-XXIX/3 with the German research ice breaker Polarstern in 2013, research was carried out to investigate the role of environmental factors on the distribution of benthic communities and marine mammal and krill densities around the northern tip of the Antarctic Peninsula. For these studies collated in this special issue and studies in this area, we present a collection of environmental parameters with probable influence on the marine ecosystems around the Antarctic Peninsula.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.