331 resultados para Visão de cores


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation features within the cores are studied with a view towards elucidating the structure of the Middle America Trench along the transect drilled during Leg 67. Where possible, inferences are made as to the physical environment of deformation. Extensional tectonics prevails in the area of the seaward slope and trench. Fracturing and one well-preserved normal fault are found mostly within the lower Miocene chalks, at the base of the sedimentary section. These chalks have high porosities (40%-60%) and water content (30%-190%, based on % dry wt.). Experimental triaxial compression tests conducted on both dry and water-saturated samples of chalk from Holes 495 and 499B show that only in the saturated samples is more brittle behavior observed. Brittle failure of the chalks is greatly facilitated by pore fluid pressures that lead to low effective pressures. Additional embrittlement (weakening) can take place as a result of the imposed extensional stress resulting from bending of a subducting elastic oceanic plate. The chalks exhibit, in a landward direction, an increase in density and mechanical strength and a decrease in water content. These changes are attributed to mechanical compaction that may have resulted from tectonic horizontal compression. The structure of the landward slope is not well understood because the slope sites had to be abandoned due to the presence of gas hydrate. The relationship of the chaotic, brittle deformation (observed in the cores from Hole 494A) at the base of the landward slope to tectonic processes remains unclear. The deformation observed on the slope sites (Holes 496 and 497) is mostly fracturing and near-vertical sigmoidal veinlets. These are interpreted as being the result of gas/fluid overpressurization due to the decomposition of the gas hydrate, and not due to tectonic loading of accreted sediments. Aside from four small displacement (less than 1cm) reverse faults observed in the lower Miocene chalks (which may be the product of soft-sediment deformation), there is a noticeable absence of structures reflecting a dominance of horizontal (tectonic) compression along the transect drilled. The absence of such features, the lack of continuity of sediment types across the trench-landward slope, and the normal stratigraphic sequence in Hole 494A do not support any known accretionary model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nine piston cores and six triggerweight cores retrieved from the eastern equatorial Pacific Ocean during the Venture 1 expedition were analyzed for dry-bulk density (DBD) and CaCO3 content. Sites are located along a north-south transect at 110°W from 11°N to 3°S and along an east-west transect from 110° to 90°W, at approximately 3°S. The data reveal two DBD-CaCO3 relationships and four patterns of CaCO3 abundance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5°S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38°S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36°S appears to be best suited for turbidite paleoseismology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Albian/Cenomanian strata in Hole 530A are organically richer than are the post-Cenomanian strata. Organic matter is thermally immature and appears to be of dominantly marine origin with either variable levels of oxidation or variable amounts of terrestrial input. Geochemical data alone cannot establish whether the black shales present in Hole 530A represent deposition within a stagnant basin or within an expanded oxygen-minimum layer

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Hg distribution and some mineralogical-geochemical features of bottom sediments up to a depth of 10 m in the Deryugin Basin showed that the high and anomalous Hg contents in the Holocene deposits are confined to a spreading riftogenic structure and separate fluid vents within it. The accumulations of Hg in the the sediments were caused by its fluxes from gas and low-temperature hydrothermal vents under favorable oceanological conditions in the Holocene. The two mainly responsible for the high and anomalous Hg contents are infiltration (fluxes of hydrothermal or gas fluids from the sedimentary cover) and plume (Hg precipitation from water plumes with certain hydrochemical conditions forming above endogenous sources). The infiltration anomalies of Hg were revealed in the following environments: (1) near gas vents on the northeastern Sakhalin slope, where high Hg contents are associated only with Se and were caused by the accumulation of gases ascending from beneath the gas hydrate layer; (2) in the area of inferred occasionally operating low-temperature hydrothermal seeps in the central part of the Deryugin Basin, in which massive barite chimneys, hydrothermal Fe-Mn crusts, and anomalous contents of Mn, Ba, Zn, and Ni in sediments develop.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth's climate abruptly warmed by 5-8 °C during the Palaeocene-Eocene thermal maximum (PETM), about 55.5 million years ago**1,2. This warming was associated with a massive addition of carbon to the ocean-atmosphere system, but estimates of the Earth systemresponse to this perturbation are complicated by widely varying estimates of the duration of carbon release, which range from less than a year to tens of thousands of years. In addition the source of the carbon, and whether it was released as a single injection or in several pulses, remains the subject of debate**2-4. Here we present a new high-resolution carbon isotope record from terrestrial deposits in the Bighorn Basin (Wyoming, USA) spanning the PETM, and interpret the record using a carbon-cycle boxmodel of the ocean-atmosphere-biosphere system.Our record shows that the beginning of the PETMis characterized by not one but two distinct carbon release events, separated by a recovery to background values. To reproduce this pattern, our model requires two discrete pulses of carbon released directly to the atmosphere, at average rates exceeding 0.9 Pg C yr**-1, with the first pulse lasting fewer than 2,000 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between ~13,500 and ~8,900 cal. years BP and possibly during the 8,200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8°C during the Holocene Thermal Maximum (HTM) between ~8,900 and ~4,500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3,000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice-sheet vanished 7,000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examine the possibility that glacial increase in the areal extent of reducing sediments might have changed the oceanic Cd inventory, thereby decoupling Cd from PO4. We suggest that the precipitation of Cd-sulfide in suboxic sediments is the single largest sink in the oceanic Cd budget and that the accumulation of authigenic Cd and U is tightly coupled to the organic carbon flux into the seafloor. Sediments from the Subantarctic Ocean and the Cape Basin (South Atlantic), where oxic conditions currently prevail, show high accumulation rates of authigenic Cd and U during glacial intervals associated with increased accumulation of organic carbon. These elemental enrichments attest to more reducing conditions in glacial sediments in response to an increased flux of organic carbon. A third core, overlain by Circumpolar Deep Water (CPDW) as are the other two cores but located south of the Antarctic Polar Front, shows an approximately inverse pattern to the Subantarctic record. The contrasting patterns to the north and south of the Antarctic Polar Front suggest that higher accumulation rates of Cd and U in Subantarctic sediments were driven primarily by increased productivity. This proposal is consistent with the hypothesis of glacial stage northward migration of the Antarctic Polar Front and its associated belt of high siliceous productivity. However, the increase in authigenic Cd and U glacial accumulation rates is higher than expected simply from a northward shift of the polar fronts, suggesting greater partitioning of organic carbon into the sediments during glacial intervals. Lower oxygen content of CPDW and higher organic carbon to biogenic silica rain rate ratio during glacial stages are possible causes. Higher glacial productivity in the Cape Basin record very likely reflects enhanced coastal up-welling in response to increased wind speeds. We suggest that higher productivity might have doubled the areal extent of suboxic sediments during the last glacial maximum. However, our calculations suggest low sensitivity of seawater Cd concentrations to glacial doubling of the extent of reducing sediments. The model suggests that during the last 250 kyr seawater Cd concentrations fluctuated only slightly, between high levels (about 0.66 nmol/kg) on glacial initiations and reaching lowest values (about 0.57 nmol/kg) during glacial maxima. The estimated 5% lower Cd content at the last glacial maximum relative to modern levels (0.60 nmol/kg) cannot explain the discordance between Cd and delta13C, such as observed in the Southern Ocean. This low sensitivity is consistent with foraminiferal data, suggesting minimal change in the glacial Cd mean oceanic content.