663 resultados para Swedish Core Affect Scale
Resumo:
Changes of sea surface temperature (SST) in the subarctic NE Pacific over the last 16,000 calendar years before present (16 kyr BP) have been inferred from the study of C37 alkenone unsaturation in a sediment core from the western Canadian continental slope. Between 16.0 and 11.0 kyr, three distinct cold phases (6-7°C) interrupt two warmer periods (9-10°C). Within the 2sigma range of the radiocarbon based time control, the observed SST oscillations correspond to the Oldest Dryas, the Bolling, the Older Dryas, the Allered, and the Younger Dryas periods in the GISP2 d180 record. These results represent the first high resolution marine paleotemperature estimates off the northern West coast of North America and imply that the climate of this region may be very strongly coupled to that of the North Atlantic. Given the fast rates of SST change (1°C/40-80 yr), such coupling must be controlled by atmospheric transmission of the climate signal.
Resumo:
To reconstruct variability of the West African monsoon and associated vegetation changes on precessional and millennial time scales, we analyzed a marine sediment core from the continental slope off Senegal spanning the past 44,000 years (44 ka). We used the stable hydrogen isotopic composition (dD) of individual terrestrial plant wax n-alkanes as a proxy for past rainfall variability. The abundance and stable carbon isotopic composition (d13C) of the same compounds were analyzed to assess changes in vegetation composition (C3/C4 plants) and density. The dD record reveals two wet periods that coincide with local maximum summer insolation from 38 to 28 ka and 15 to 4 ka and that are separated by a less wet period during minimum summer insolation. Our data indicate that rainfall intensity during the rainy season throughout both wet humid periods was similar, whereas the length of the rainy season was presumably shorter during the last glacial than during the Holocene. Additional dry intervals are identified that coincide with North Atlantic Heinrich stadials and the Younger Dryas interval, indicating that the West African monsoon over tropical northwest Africa is linked to both insolation forcing and high-latitude climate variability. The d13C record indicates that vegetation of the western Sahel was consistently dominated by C4 plants during the past 44 ka, whereas C3-type vegetation increased during the Holocene. Moreover, we observe a gradual ending of the Holocene humid period together with unchanging ratio of C3 to C4 plants, indicating that an abrupt aridification due to vegetation feedbacks is not a general characteristic of this time interval.
Resumo:
NW African climate shows orbital and millenial-scale variations, which are tightly connected to changes in marine productivity. We present an organic-walled dinoflagellate cyst (dinocyst) record from a sediment core off Cape Yubi at about 27°N in the Canary Basin covering the time period from 47 to 3ka before present (BP). The dinocyst record reflects differences in upwelling intensity and seasonality as well as the influence of fluvial input. Sea-level changes play an important role for the upwelling pattern and productivity signals at the core site. Within the studied time interval, four main phases were distinguished. (1) From 45 to 24ka BP, when sea-level was mostly about 75m lower than today, high relative abundances of cysts of heterotrophic taxa point to enhanced upwelling activity, especially during Heinrich Events, while relatively low dinocyst accumulation rates indicate that filament activity at the core location was strongly reduced. (2) At sea-level lowstand during the LGM to H1, dinocyst accumulation rates suggest that local filament formation was even more inhibited. (3) From the early Holocene to about 8ka BP, extraordinary high accumulation rates of most dinocyst species, especially of Lingulodinium machaerophorum, suggest that nutrient supply via fluvial input increased and rising sea-level promoted filament formation. At the same time, the upwelling season prolongated. (4) A relative increase in cysts of photoautotrophic taxa from about 8ka BP on indicates more stratified conditions while fluvial input decreased. Our study shows that productivity records can be very sensitive to regional features. From the dinocyst data we infer that marine surface productivity off Cape Yubi during glacial times was within the scale of modern times but extremely enhanced during deglaciation.
Resumo:
Deep ocean circulation has been considered relatively stable during interglacial periods, yet little is known about its behavior on submillennial time scales. Using a subcentennially resolved epibenthic foraminiferal d13C record we show that North Atlantic Deep Water (NADW) influence was strong at the onset of the last interglacial period and then interrupted by several prominent, centennial-scale reductions. These NADW transients occurred during periods of increased ice rafting and southward expansions of polar water influence, suggesting that a buoyancy threshold for convective instability was triggered by freshwater and circum-Arctic cryosphere changes. The deep Atlantic chemical changes were similar in magnitude to those associated with glaciations, implying that the canonical view of a relatively stable interglacial circulation may not hold for conditions warmer/fresher than at present.
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
At the western continental margin of the Barents Sea, 75°N, hemipelagic sediments provide a record of Holocene climate change with a time resolution of 10-70 years. Planktic foraminifera counts reveal a very early Holocene thermal optimum 10.7-7.7 kyr BP, with summer sea surface temperatures (SST) of 8°C and a much enhanced West Spitsbergen Current. There was a short cooling between 8.8 and 8.2 kyr BP. In the middle and late Holocene summer, SST dropped to 2.5°-5.0°C, indicative of reduced Atlantic heat advection, except for two short warmings near 2.2 and 1.6 kyr BP. Distinct quasi-periodic spikes of coarse sediment fraction (with large portions of lithic grains, benthic and planktic foraminifera) record cascades of cold, dense winter water down the continental slope as a result of enhanced seasonal sea ice formation and storminess on the Barents shelf over the entire Holocene. The spikes primarily cluster near recurrence intervals of 400-650 and 1000-1350 years, when traced over the entire Holocene, but follow significant 885-/840- and 505-/605-year periodicities in the early Holocene. These non-stationary periodicities mimic the Greenland-[Formula: See Text]Be variability, which is a tracer of solar forcing. Further significant Holocene periodicities of 230, (145) and 93 years come close to the deVries and Gleissberg solar cycles.
Resumo:
The influence of the large-scale ocean circulation on Sahel rainfall is elusive because of the shortness of the observational record. We reconstructed the history of eolian and fluvial sedimentation on the continental slope off Senegal during the past 57,000 years. Our data show that abrupt onsets of arid conditions in the West African Sahel were linked to cold North Atlantic sea surface temperatures during times of reduced meridional overturning circulation associated with Heinrich Stadials. Climate modeling suggests that this drying is induced by a southward shift of the West African monsoon trough in conjunction with an intensification and southward expansion of the midtropospheric African Easterly Jet.
Resumo:
Millennial-scale dry events in the Northern Hemisphere monsoon regions during the last Glacial period are commonly attributed to southward shifts of the Intertropical Convergence Zone (ITCZ) associated with an intensification of the northeasterly (NE) trade wind system during intervals of reduced Atlantic meridional overturning circulation (AMOC). Through the use of high-resolution last deglaciation pollen records from the continental slope off Senegal, our data show that one of the longest and most extreme droughts in the western Sahel history, which occurred during the North Atlantic Heinrich Stadial 1 (HS1), displayed a succession of three major phases. These phases progressed from an interval of maximum pollen representation of Saharan elements between ~19 and 17.4 kyr BP indicating the onset of aridity and intensified NE trade winds, followed by a millennial interlude of reduced input of Saharan pollen and increased input of Sahelian pollen, to a final phase between ~16.2 and 15 kyr BP that was characterized by a second maximum of Saharan pollen abundances. This change in the pollen assemblage indicates a mid-HS1 interlude of NE trade wind relaxation, occurring between two distinct trade wind maxima, along with an intensified mid-tropospheric African Easterly Jet (AEJ) indicating a substantial change in West African atmospheric processes. The pollen data thus suggest that although the NE trades have weakened, the Sahel drought remained severe during this time interval. Therefore, a simple strengthening of trade winds and a southward shift of the West African monsoon trough alone cannot fully explain millennial-scale Sahel droughts during periods of AMOC weakening. Instead, we suggest that an intensification of the AEJ is needed to explain the persistence of the drought during HS1. Simulations with the Community Climate System Model indicate that an intensified AEJ during periods of reduced AMOC affected the North African climate by enhancing moisture divergence over the West African realm, thereby extending the Sahel drought for about 4000 years.