2 resultados para Swedish Core Affect Scale

em CaltechTHESIS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.

Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.

A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.

P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.

Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The geology and structure of two crustal scale shear zones were studied to understand the partitioning of strain within intracontinental orogenic belts. Movement histories and regional tectonic implications are deduced from observational data. The two widely separated study areas bear the imprint of intense Late Mesozoic through Middle Cenozoic tectonic activity. A regional transition from Late Cretaceous-Early Tertiary plutonism, metamorphism, and shortening strain to Middle Tertiary extension and magmatism is preserved in each area, with contrasting environments and mechanisms. Compressional phases of this tectonic history are better displayed in the Rand Mountains, whereas younger extensional structures dominate rock fabrics in the Magdalena area.

In the northwestern Mojave desert, the Rand Thrust Complex reveals a stack of four distinctive tectonic plates offset along the Garlock Fault. The lowermost plate, Rand Schist, is composed of greenschist facies metagraywacke, metachert, and metabasalt. Rand Schist is structurally overlain by Johannesburg Gneiss (= garnet-amphibolite grade orthogneisses, marbles and quartzites), which in turn is overlain by a Late Cretaceous hornblende-biotite granodiorite. Biotite granite forms the fourth and highest plate. Initial assembly of the tectonic stack involved a Late Cretaceous? south or southwest vergent overthrusting event in which Johannesburg Gneiss was imbricated and attenuated between Rand Schist and hornblende-biotite granodiorite. Thrusting postdated metamorphism and deformation of the lower two plates in separate environments. A post-kinematic stock, the Late Cretaceous Randsburg Granodiorite, intrudes deep levels of the complex and contains xenoliths of both Rand Schist and mylonitized Johannesburg? gneiss. Minimum shortening implied by the map patterns is 20 kilometers.

Some low angle faults of the Rand Thrust Complex formed or were reactivated between Late Cretaceous and Early Miocene time. South-southwest directed mylonites derived from Johannesburg Gneiss are commonly overprinted by less penetrative north-northeast vergent structures. Available kinematic information at shallower structural levels indicates that late disturbance(s) culminated in northward transport of the uppermost plate. Persistence of brittle fabrics along certain structural horizons suggests a possible association of late movement(s) with regionally known detachment faults. The four plates were juxtaposed and significant intraplate movements had ceased prior to Early Miocene emplacement of rhyolite porphyry dikes.

In the Magdalena region of north central Sonora, components of a pre-Middle Cretaceous stratigraphy are used as strain markers in tracking the evolution of a long lived orogenic belt. Important elements of the tectonic history include: (1) Compression during the Late Cretaceous and Early Tertiary, accompanied by plutonism, metamorphism, and ductile strain at depth, and thrust driven? syntectonic sedimentation at the surface. (2) Middle Tertiary transition to crustal extension, initially recorded by intrusion of leucogranites, inflation of the previously shortened middle and upper crustal section, and surface volcanism. (3) Gravity induced development of a normal sense ductile shear zone at mid crustal levels, with eventual detachment and southwestward displacement of the upper crustal stratigraphy by Early Miocene time.

Elucidation of the metamorphic core complex evolution just described was facilitated by fortuitous preservation of a unique assemblage of rocks and structures. The "type" stratigraphy utilized for regional correlation and strain analysis includes a Jurassic volcanic arc assemblage overlain by an Upper Jurassic-Lower Cretaceous quartz pebble conglomerate, in turn overlain by marine strata with fossiliferous Aptian-Albian limestones. The Jurassic strata, comprised of (a) rhyolite porphyries interstratified with quartz arenites, (b) rhyolite cobble conglomerate, and (c) intrusive granite porphyries, are known to rest on Precambrian basement north and east of the study area. The quartz pebble conglomerate is correlated with the Glance Conglomerate of southeastern Arizona and northeastern Sonora. The marine sequence represents part of an isolated arm? of the Bisbee Basin.

Crosscutting structural relationships between the pre-Middle Cretaceous supracrustal section, younger plutons, and deformational fabrics allow the tectonic sequence to be determined. Earliest phases of a Late Cretaceous-Early Tertiary orogeny are marked by emplacement of the 78 ± 3 Ma Guacomea Granodiorite (U/Pb zircon, Anderson et al., 1980) as a sill into deep levels of the layered Jurassic series. Subsequent regional metamorphism and ductile strain is recorded by a penetrative schistosity and lineation, and east-west trending folds. These fabrics are intruded by post-kinematic Early Tertiary? two mica granites. At shallower crustal levels, the orogeny is represented by north directed thrust faulting, formation of a large intermontane basin, and development of a pronounced unconformity. A second important phase of ductile strain followed Middle Tertiary? emplacement of leucogranites as sills and northwest trending dikes into intermediate levels of the deformed section (surficial volcanism was also active during this transitional period to regional extension). Gravitational instabilities resulting from crustal swelling via intrusion and thermal expansion led to development of a ductile shear zone within the stratigraphic horizon occupied by a laterally extensive leucogranite sill. With continued extension, upper crustal brittle normal faults (detachment faults) enhanced the uplift and tectonic denudation of this mylonite zone, ultimately resulting in southwestward displacement of the upper crustal stratigraphy.

Strains associated with the two ductile deformation events have been successfully partitioned through a multifaceted analysis. R_f/Ø measurements on various markers from the "type" stratigraphy allow a gradient representing cumulative strain since Middle Cretaceous time to be determined. From this gradient, noncoaxial strains accrued since emplacement of the leucogranites may be removed. Irrotational components of the postleucogranite strain are measured from quartz grain shapes in deformed granites; rotational components (shear strains) are determined from S-C fabrics and from restoration of rotated dike and vein networks. Structural observations and strain data are compatable with a deformation path of: (1) coaxial strain (pure shear?), followed by (2) injection of leucogranites as dikes (perpendicular to the minimum principle stress) and sills (parallel to the minimum principle stress), then (3) southwest directed simple shear. Modeling the late strain gradient as a simple shear zone permits a minimum displacement of 10 kilometers on the Magdalena mylonite zone/detachment fault system. Removal of the Middle Tertiary noncoaxial strains yields a residual (or pre-existing) strain gradient representative of the Late Cretaceous-Early Tertiary deformation. Several partially destrained cross sections, restored to the time of leucogranite emplacement, illustrate the idea that the upper plate of the core complex bas been detached from a region of significant topographic relief. 50% to 100% bulk extension across a 50 kilometer wide corridor is demonstrated.

Late Cenozoic tectonics of the Magdalena region are dominated by Basin and Range style faulting. Northeast and north-northwest trending high angle normal faults have interacted to extend the crust in an east-west direction. Net extension for this period is minor (10% to 15%) in comparison to the Middle Tertiary detachment related extensional episode.