259 resultados para Pliny, the Younger.
Resumo:
A prominent feature in the Southeast Atlantic is the Angola-Benguela Front (ABF), the convergence between warm tropical and cold subtropical upwelled waters. At present, the sea-surface temperature (SST) gradient across the ABF and its position are influenced by the strength of southeasterly (SE) trade winds. Here, we present a record of changes in the ABF SST gradient over the last 25 kyr. Variations in this SST contrast indicate that periods of strengthened SE trade-wind intensity occurred during the Last Glacial Maximum, the Younger Dryas, and the Mid to Late Holocene, while Heinrich Event 1, the early part of the Bølling-Allerød, and the Early Holocene were periods of weakened SE trade-winds.
Resumo:
Hide Intense debate persists about the climatic mechanisms governing hydrologic changes in tropical and subtropical southeast Africa since the Last Glacial Maximum, about 20,000 years ago. In particular, the relative importance of atmospheric and oceanic processes is not firmly established. Southward shifts of the intertropical convergence zone (ITCZ) driven by high-latitude climate changes have been suggested as a primary forcing, whereas other studies infer a predominant influence of Indian Ocean sea surface temperatures on regional rainfall changes. To address this question, a continuous record representing an integrated signal of regional climate variability is required, but has until now been missing. Here we show that remote atmospheric forcing by cold events in the northern high latitudes appears to have been the main driver of hydro-climatology in southeast Africa during rapid climate changes over the past 17,000 years. Our results are based on a reconstruction of precipitation and river discharge changes, as recorded in a marine sediment core off the mouth of the Zambezi River, near the southern boundary of the modern seasonal ITCZ migration. Indian Ocean sea surface temperatures did not exert a primary control over southeast African hydrologic variability. Instead, phases of high precipitation and terrestrial discharge occurred when the ITCZ was forced southwards during Northern Hemisphere cold events, such as Heinrich stadial 1 (around 16,000 years ago) and the Younger Dryas (around 12,000 years ago), or when local summer insolation was high in the late Holocene, i.e., during the last 4,000 years.
Resumo:
A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (delta18O(ivc-sw)) using Mg / Ca and delta18O of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg / Ca SST and delta18O(ivc-sw), a proxy for sea surface salinity (SSS), reveals a warming of around 2.5 °C along with an increase in salinity. A second period of pronounced warming and SSS increase occurred between 11.6 and 13.5 kyr BP. Within age model uncertainties, both warming intervals were synchronous with air temperature increase over Antarctica and ice retreat in the southern South Atlantic and terminated with abrupt centennial scale SSS decrease and slight SST cooling in conjunction with interglacial reactivation of the meridional overturning circulation (MOC). We suggest that during these warm intervals, production of saline and warm water of the North Brazil Current resulted in pronounced heat and salt accumulation, and was associated with warming in the southern Atlantic, southward displacement of the intertropical convergence zone and weakened MOC. At the termination of the Younger Dryas and Heinrich event 1, intensification of cross-equatorial heat and salt transport caused centennial scale cooling and freshening of the western tropical Atlantic surface water. This study shows that the western tropical Atlantic served as a heat and salt reservoir during deglaciation. The sudden release of accumulated heat and salt at the end of Younger Drays and Heinrich event 1 may have contributed to the rapid reinvigoration of the Atlantic MOC.
Resumo:
High-resolution, well-dated calcareous dinoflagellate cyst and organic carbon records from a 58 kyr sediment core (M35003-4) located southeast of the island of Grenada show that rapid and pronounced changes in cyst association and accumulation and organic carbon deposition occurred, controlled by (1) a significant southward shift in the position of the North Equatorial Current during the last glacial period and the Younger Dryas cold interval and (2) rapid changes in local productivity in marine isotopic stage 3 that are associated with variations in Orinoco River nutrient discharge and coastal upwelling strength. Prominent cyst accumulation peaks representing extremely oligotrophic and stratified thermocline conditions mimic the Greenland ice core and northern Atlantic Dansgaard/Oeschger stadials and Heinrich events. We provide new evidence for a coupled tropical/high-latitude Atlantic climate system during the last glacial period and suggest that changes in the zonality of the low-latitude winds may play an important role in modulating rapid interhemispheric climate variability.
Resumo:
Palynological investigations in northeastern Bavaria (Bavarian Vogtland, Fichtelgebirge, Steinwald) reveal the Late Glacial and Postglacial history of the regional vegetation. Radiocarbon data in comparison with those from the neighbouring regions (Rhön, Oberpfälzer Wald, Bavarian Forests) show a time lag in the development of the arboreal vegetation due to migration processes. The Fichtelgebirge is the southernmost part ofnortheastern Bavaria where the early Alleröd period (pollen zone IIa) is characterised by a dominance of birch forests. Hazel reached maximal values around 8000 BP in the area from the Fichtelgebirge to the Bavarian Forests, e.g. about 600 years earlier than in the more northern Rhön mountains. For spruce there is a considerable time lag between the Bavarian Forests and the Fichtelgebirge. Spruce spreading started in the Fichtelgebirge during the older part of the Atlantic period (pollen zone VI). At the same time, spruce already was the dominant tree in the Bavarian Forests. During the younger part of the Atlantic period (pollen zone VII) spruce and mixed oak forest tree species frequently occurred in the Fichtelgebirge. At the end of pollen zone VI, spruce came to dominance. At the same time, the immigration of beech started. During the Subboreal period (pollen zone VIII), spruce remained being a dominant member in the forests and at the end of pollen zone VIII, fir began to spread rapidly. During the first part of the Subatlantic period (pollen zone IX) spruce, beech, fir and pine formed the mountainous forests in the Fichtelgebirge. In the area of the Bavarian Vogtland, however, fir was a dominant forest tree during pollen zone IX, while spruce and beech played a less important role. During the 12th century, human colonisation started in the area of the Fichtelgebirge. This is 400 years later as in the area of the Rhön mountains. Indicators for earlier forest clearances are rare or absent.
Resumo:
[1] The low-latitude upwelling regime off the Mauritanian coast in the subtropical NE Atlantic accounts for a significant part of global export production. Although productivity variations in coastal upwelling areas are usually attributed to changes in wind stress and upwelling intensity, productivity dynamics off Mauritania are less straightforward because of the complex atmospheric and hydrographic setting. Here we integrate micropaleontological (diatoms) and geochemical (bulk biogenic sediment components, X-ray fluorescence, and alkenones) proxies to examine on submillennial-to-millennial changes in diatom production that occurred off Mauritania, NW Africa, for the last 25 ka. During the Last Glacial Maximum (LGM, 19.0-23.0 ka B.P.), moderate silicate content of upwelled waters coupled with weakened NE trade winds determined moderate diatom productivity. No significant cooling is observed during the LGM, suggesting that our alkenone-based SST reconstruction represents a local, upwelling-related signal rather than a global insolation related one. Extraordinary increases in diatom and opal concentrations during Heinrich event 1 (H1, 15.5-18.0 ka B.P.) and the Younger Dryas (YD, 13.5-11.5 ka B.P.) are attributed to enhanced upwelling of silica-rich waters and an enlarged upwelling filament, due to more intense NE trade winds. The synchronous increase of CaCO3 and K intensity and the decreased opal and diatoms values mark the occurrence of the Bølling/Allerød (BA, 13.5-15.5 ka B.P.) due to weakened eolian input and more humid conditions on land. Although the high export of diatoms is inextricably linked to upwelling intensity off Mauritania, variability in the nutrient content of the thermocline also plays a decisive role.
Resumo:
Conglomerates and sandstones in lithologic unit V at DSDP Site 445 comprise lithic clasts, detrital minerals, bioclasts, and authigenic minerals. The lithic clasts are dominantly plagioclase-phyric basalt and microdolerite, followed by plagioclase-clinopyroxene-phyric basalt, aphyric basalt, chert, and limestone. A small amount of hornblende schist occurs. Detrital minerals are dominantly plagioclase, augite, titaniferous augite, olivine, green to pale-brown hornblende, and dark-brown hornblende, with subordinate chromian spinel, epidote, ilmenite, and magnetite, and minor amounts of diopside, enstatite, actinolite, and aegirine-augite. Bioclasts are Nummulites boninensis, Asterocyclina sp. cf. A. penuria, and some other larger foraminifers. Correlation of cored and dredged samples indicates that the Daito Ridge is mainly composed of igneous, metamorphic, ultramafic, and sedimentary rocks. The igneous rocks are mafic (probably tholeiitic) and alkalic. The metamorphic rocks are hornblende schist, tremolite schist, and diopside-chlorite schist. The ultramafic rocks are alpinetype peridotites. Mineralogical data suggest that there were two metamorphic events in the Daito Ridge. The older one was intermediate- to high-pressure metamorphism. The younger one was contact metamorphism caused by a Paleocene volcanic event, possibly related to the beginning of spreading of the west Philippine Basin. The ultramafic rocks suffered from the same contact metamorphism. During the Eocene, exposed volcanic and metamorphic rocks on the uplifted Daito Ridge may have supplied pebble clasts to the surrounding coast and shallow sea bottom. The steep slope offshore may have caused frequent slumping and transportation of the pebble clasts and shallow-water benthic organisms into deeper water, forming the conglomerates and sandstones treated here.
Resumo:
There is limited knowledge pertaining to the history of the Greenland Ice Sheet (GIS) during the last glacial-interglacial transition as it retreated from the continental margins to an inland position. Here we use multiproxy data, including ice-rafted debris (IRD); planktonic isotopes; alkenone temperatures; and tephra geochemistry from the northern Labrador Sea, off southwest Greenland, to investigate the deglacial response of the GIS and evaluate its implications for the North Atlantic deglacial development. The results imply that the southern GIS retreated in three successive stages: (1) early deglaciation of the East Greenland margins, by tephra-rich IRD that embrace Heinrich Event 1; (2) progressive retreat during Allerød culminating in major meltwater releases (d18O depletion of 1.2 per mil) at the Allerød-Younger Dryas transition (12.8-13.0 kyr B.P.); and (3) a final stage of glacial recession during the early Holocene (~9-11 kyr B.P.). Rather than indicating local temperatures of ambient surface water, the alkenones likely were transported to the core site by the Irminger Current. We attribute the timing of GIS retreat to the incursion of warm intermediate waters along the base of grounded glaciers and below floating ice shelves on the continental margin. The results lend support to the view that GIS meltwater presented a forcing factor for the Younger Dryas cooling.
Resumo:
Greenland ice core records indicate that the last deglaciation (~7-21 ka) was punctuated by numerous abrupt climate reversals involving temperature changes of up to 5°C-10°C within decades. However, the cause behind many of these events is uncertain. A likely candidate may have been the input of deglacial meltwater, from the Laurentide ice sheet (LIS), to the high-latitude North Atlantic, which disrupted ocean circulation and triggered cooling. Yet the direct evidence of meltwater input for many of these events has so far remained undetected. In this study, we use the geochemistry (paired Mg/Ca-d18O) of planktonic foraminifera from a sediment core south of Iceland to reconstruct the input of freshwater to the northern North Atlantic during abrupt deglacial climate change. Our record can be placed on the same timescale as ice cores and therefore provides a direct comparison between the timing of freshwater input and climate variability. Meltwater events coincide with the onset of numerous cold intervals, including the Older Dryas (14.0 ka), two events during the Allerød (at ~13.1 and 13.6 ka), the Younger Dryas (12.9 ka), and the 8.2 ka event, supporting a causal link between these abrupt climate changes and meltwater input. During the Bølling-Allerød warm interval, we find that periods of warming are associated with an increased meltwater flux to the northern North Atlantic, which in turn induces abrupt cooling, a cessation in meltwater input, and eventual climate recovery. This implies that feedback between climate and meltwater input produced a highly variable climate. A comparison to published data sets suggests that this feedback likely included fluctuations in the southern margin of the LIS causing rerouting of LIS meltwater between southern and eastern drainage outlets, as proposed by Clark et al. (2001, doi:10.1126/science.1062517).
Resumo:
The lower part of the syn-rift Barremian-?Hauterivian section at Site 549 contains a large amount of acid-resistant land-derived organic matter that, as elsewhere in the Cretaceous sediments of the IPOD Leg 80 sites, is thermally immature. This plant debris was derived from a vegetation made up of many species of pteridophytes and gymnosperms. The palynofacies indicate that the sediments were deposited in shallow marginal and nonmarine environments and that the climate was probably warm temperate and fairly moist at the time. Source potential for gas is suggested at some horizons. Most of the younger Lower Cretaceous sediments at this and the other sites were deposited in more open marine conditions. Although they generally contain less organic matter, land plant remains continue to comprise a major part of the palynofacies. The Upper Cretaceous sediments were mainly deposited in well oxygenated conditions and are organically lean. However, stratigraphically restricted dark-colored shales at Sites 549 to 551 contain relatively large quantities of amorphous detritus of at least partly marine origin. These characteristics are suggestive of deposition during periods of restricted circulation and also of source potential for oil and gas if maturation levels had been higher.
Resumo:
The present study is the first study on the stable oxygen isotope composition of the photosynthetic calcareous-walled dinoflagellate species Thoracosphaera heimii off NW Africa during the last 45,000 yr. T. heimii based temperature estimates of sediment core GeoB 8507-3 were compared with those obtained from the stable oxygen isotopes of the planktic foraminifera Globigerina bulloides and Globigerinoides ruber (pink), and the Mg/Ca ratio of G. ruber (pink). We show that the isotopic composition of T. heimii and the temperature estimates based on the equation for inorganically precipitated calcite provide comparable results to those obtained from G. ruber (pink) isotopes and Mg/Ca ratios with exception of the Early Holocene and the Younger Dryas. The recently proposed palaeotemperature equation of Zonneveld et al. (2007), however, provides unrealistic temperature reconstructions that are about 16 °C lower than those based on planktic foraminifera. Thus, this equation needs to be revised. The difference between T. heimii and G. bulloides isotopic and temperature reconstructions can be ascribed to differences in the ecology of both species, especially with regard to their depth habitat and/or seasonal production in the research area. All temperature proxies suggest comparable conditions during the last glacial and Holocene. Small differences between the reconstructed temperature values of T. heimii and the other proxies can be explained by differences in seasonal production of the individual species. The relatively low temperatures recorded by T. heimii at about 15,000 to 8,000 yr BP are interpreted to reflect an increase in duration and/or intensity of the upwelling in the vicinity of the core site in comparison to the last glacial, with an abrupt and strong decrease of upwelling intensity and/or duration during the Early Holocene and the Younger Dryas.