165 resultados para Nematoda Eggs


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general study of structure, biomass estimates and dynamics on the macrofauna was carried out in August 1975 and March 1976 during PREFLEX (1975) and FLEX (1976), the Fladen Ground Experiment. On the basis of these data an attempt was made to estimate macrobenthic production expressed as minimum production (MP). The macrobenthic production is discussed together with meiobenthic annual production and with indirectly estimated microbenthic production in relation to an energy input from the water column of about 25 g C m**-2 year**-1. From the production estimates of the three benthic components a rough energy budget is proposed. Sampling was performed at five stations for endofauna twice during the time of investigation and for epifauna once. At each station two replicate box core samples (30 X 20 cm) were taken for endofauna. Epifauna was sampled with an Agassiz trawl once at each station. The total numbers of endofauna increased from station 1 to 5. This was valid as well for August 1975 (4,233-12,166 individuals per m**2 and 10 cm sediment depth) as for March 1976 (1,008-2,925 individuals). The polychaetes were the dominant organisms with a share of 33 to 62 %. The densities for the endofauna decreased from August 1975 to March 1976 by a mean factor of 2.8. Abundances of epifauna amounted to values between 11 and 102 individuals per 1000 m**2. The biomass dry weights (DWT) for macrobenthic endofauna varied between 0.97 g DWT m**-2 and 6.42 g DWT m**-2 in August 1975 and between 0.27 g DWT m**-2 and 2.64 g DWT m**-2 in March 1976. The mean amounted to 1.74 g DWT m**-2. Dry weights of epifauna biomass gave values between 4.9 and 83.1 g DWT * 1000 m**-2. The minimum production for the total macro-endofauna at Fladen Ground amounted to 1.43 g DWT m**-2 yr**-1 or 0.82 g C m**-2 yr**-1. This resulted in a minimum turnover rate (P/B) of 0.8. The share produced by the polychaetes amounted to 1.06g DWT m**-2 yr**-1 or 74 %.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meltponds on Arctic sea ice have previously been reported to be devoid of marine metazoans due to fresh-water conditions. The predominantly dark frequently also green and brownish meltponds observed in the Central Arctic in summer 2007 hinted to brackish conditions and considerable amounts of algae, possibly making the habitat suitable for marine metazoans. Environmental conditions in meltponds as well as sympagic meiofauna in new ice covering pond surfaces and in rotten ice on the bottom of ponds were studied, applying modified techniques from sea-ice and under-ice research. Due to the very porous structure of the rotten ice, the meltponds were usually brackish to saline, providing living conditions very similar to sub-ice water. The new ice cover on the surface had similar characteristics as the bottom layer of level ice. The ponds were thus accessible to and inhabitable by metazoans. The new ice cover and the rotten ice were inhabited by various sympagic meiofauna taxa, predominantly ciliates, rotifers, acoels, nematodes and foraminiferans. Also, sympagic amphipods were found on the bottom of meltponds. We suggest that, in consequence of global warming, brackish and saline meltponds are becoming more frequent in the Arctic, providing a new habitat to marine metazoans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750??atm and 1200??atm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600?m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.