659 resultados para 120-1


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The vertical density gradients in the Nordic Seas are crucial for the preconditioning of the surface water to thermohaline sinking in winter. These gradients can be reconstructed from paired oxygen isotope data in tests of different species of planktonic foraminifera, the isotopic signatures of which represent different calcification depths in the water column. Comparison of d18O values from foraminiferal tests in plankton hauls, sediment traps, and nearby core top samples with the calculated d18Ocalcite profile of the water column revealed species-specific d18O vital effects and the role of bioturbational admixture of subfossil specimens into the surface sediment. On the basis of core top samples obtained along a west-east transect across various hydrographic regions of the Nordic Seas, d18O values of Turborotalita quinqueloba document apparent calcification depths within the pycnocline at 25-75 m water depth. The isotopic signatures of Neogloboquadrina pachyderma (s) reflect water masses near and well below the pycnocline between 70 and 250 m off Norway, where the Atlantic inflow leads to thermal stratification. Here, temperatures in the calcification depth of N. pachyderma (s) differ from sea surface temperature by approximately -2.5°C. In contrast, N. pachyderma (s) calcifies very close to the sea surface (20-50 m) in the Arctic domain of the western Nordic Seas. However, further west N. pachyderma (s) prefers somewhat deeper, more saline water at 70-130 m well below the halocline that confines the low saline East Greenland Current. This implies that the d18O values of N. pachyderma (s) do not fully reflect the freshwater proportion in surface water and that any reconstruction of past meltwater plumes based on d18O is too conservative, because it overestimates sea surface salinity. Minimum d18O differences (<0.2per mil) between N. pachyderma (s) and T. quinqueloba may serve as proxy for sea regions with dominant haline and absent thermal stratification, whereas thermal stratification leads to d18O differences of >0.4 to >1.5per mil.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dinoflagellate cysts and other organic-walled microfossils have been studied in recent surface sediments from the entire Norwegian-Greenland Sea. More than 30 taxa have been recognized, of which only few show a distinct distribution pattern, and allow description of four assemblages. The occurrence of most taxa is related to the relatively warmer waters of the Norwegian Sea. Algidaspaeridium? minutum s.1., Brigantedinium simplex and Impagidinium? pallidum are the only species showing a preference for colder water masses. Two species, I.? pallidum and Nematosphaeropsis labyrinthus are mainly restricted to the oceanic environment, whereas the other species have also been reported from neritic environments in previous studies. Due to the limited knowledge of the ecological and sedimentological factors influencing the occurrence of dinoflagellate cysts in oceanic environments, their distribution in recent sediments can be only related to surface water masses in a broad sense. Although the distribution of assemblages correlates with specific surface water masses, comparison with assemblages recovered from sediment traps deployed basinwide in the Norwegian-Greenland Sea (Dale and Dale, 1992) revealed some major discrepancies in species composition and percentage abundances. The differences cannot be explained with certainty at the moment, although there is some evidence that transport of dinoflagellate cysts and other fossilizable microplankton in water masses by currents, in sea-ice and sediments may modify the assemblages found in recent oceanic surface sediments from the Norwegian-Greenland Sea.