154 resultados para Radium.
Resumo:
Climate conditions in the westernmost Mediterranean (Alboran Sea basin) over the last two millennia have been reconstructed through integration of molecular proxies applied for the first time in this region at such high resolution. Two temperature proxies, one based on isoprenoid membrane lipids of marine Thaumarchaeota (TEXH86-tetraether index of compounds consisting of 86 carbons) and the other on alkenones produced by haptophytes (UK'37 ratio) were applied to reconstruct sea surface temperature (SST). Both records reveal a progressive long term decline in SST over the last two millennia and an increased rate of warming during the second half of the twentieth century. This is in accord with previous temperature reconstructions for the Northern Hemisphere. TEXH86 temperature values are higher than those inferred from UK'37, probably due to differences in the bloom season of haptophytes and Thaumarchaeota, and reflect summer SST. The branched vs. isoprenoid tetraether index (BIT index) suggests a low contribution of soil organic matter (OM) to the sedimentary OM. The stable carbon isotopic composition of long chain n-alkanes indicates a predominant C3 plant contribution, with no major change in vegetation over the last 2000 yr. The distribution of long chain 1,14-diols (most likely sourced by Proboscia species in this setting) provided insight into variation in upwelling conditions during the last 2000 yr and depicts a correlation with the North Atlantic Oscillation (NAO) index, providing evidence of enhanced wind induced upwelling during periods of a persistent positive mode of the NAO.
Resumo:
There has been much recent interest in the origin of silicic magmas at spreading centres away from any possible influence of continental crust. Here we present major and trace element data for 29 glasses (and 55 whole-rocks) sampled from a 40 km segment of the South East Rift in the Manus Basin that span the full compositional continuum from basalt to rhyolite (50-75 wt % SiO2). The glass data are accompanied by Sr-Nd-Pb, O and U-Th-Ra isotope data for selected samples. These overlap the ranges for published data from this part of the Manus Basin. Limited increases in Cl/K ratios with increasing SiO2, La-SiO2 and Yb-SiO2 relationships, and the oxygen isotope data rule out models in which the more silicic lavas result from partial melting of altered oceanic crust or altered oceanic gabbros. Rather, the data form a coherent array that is suggestive of closed-system fractional crystallization and this is well simulated by MELTS models run at 0.2 GPa and QFM (quartz-fayalite-magnetite buffer) with 1 wt % H2O, using a parental magma chosen from the basaltic glasses. Although some assimilation of altered oceanic crust or gabbro cannot be completely ruled out, there is no evidence that this plays an important role in the origin of the silicic lavas. The U-series disequilibria are dominated by 238U and 226Ra excesses that limit the timescale of differentiation to less than a few millennia. Overall, the data point to rapid evolution in relatively small magma lenses located near the base of thick oceanic crust; we speculate that this was coupled with relatively low rates of basaltic recharge. A similar model may be applicable to the generation of silicic magmas elsewhere in the ocean basins.
Resumo:
Samples of ferromanganese nodules from several localities in Lake Michigan have been analyzed for their minor element content utilizing neutron activation techniques. The thorium and uranium levels in Lake Michigan nodules exhibit marked dissimilarities with marine nodules. The radium content of these freshwater nodules is substantially higher than the reported marine values. The concentrations of barium in the Lake Michigan nodules appear to be abnormally high. Although barium could be present as minute segregations of the mineral barite, patterns obtained using the electron microprobe suggest it is evently dispersed throughout the nodules. The average arsenic content of these freshwater nodules is at least twice as great as that reported for highly oxidized marine sediments. If all this arsenic is dissolved and released into Green Bay as a result of changing environmental conditions (eutrophication), the concentration in the water of Green Bay would be several times the maximum permissible level for drinking water.
Resumo:
A major trough ('Belgica Trough') eroded by a palaeo-ice stream crosses the continental shelf of the southern Bellingshausen Sea (West Antarctica) and is associated with a trough mouth fan ('Belgica TMF') on the adjacent continental slope. Previous marine geophysical and geological studies investigated the bathymetry and geomorphology of Belgica Trough and Belgica TMF, erosional and depositional processes associated with bedform formation, and the temporal and spatial changes in clay mineral provenance of subglacial and glaciomarine sediments. Here, we present multi-proxy data from sediment cores recovered from the shelf and uppermost slope in the southern Bellingshausen Sea and reconstruct the ice-sheet history since the last glacial maximum (LGM) in this poorly studied area of West Antarctica. We combined new data (physical properties, sedimentary structures, geochemical and grain-size data) with published data (shear strength, clay mineral assemblages) to refine a previous facies classification for the sediments. The multi-proxy approach allowed us to distinguish four main facies types and to assign them to the following depositional settings: 1) subglacial, 2) proximal grounding-line, 3) distal sub-ice shelf/subsea ice, and 4) seasonal open-marine. In the seasonal open-marine facies we found evidence for episodic current-induced winnowing of near-seabed sediments on the middle to outer shelf and at the uppermost slope during the late Holocene. In addition, we obtained data on excess 210Pb activity at three core sites and 44 AMS 14C dates from the acid-insoluble fraction of organic matter (AIO) and calcareous (micro-)fossils, respectively, at 12 sites. These chronological data enabled us to reconstruct, for the first time, the timing of the last advance and retreat of the West Antarctic Ice Sheet (WAIS) and the Antarctic Peninsula Ice Sheet (APIS) in the southern Bellingshausen Sea. We used the down-core variability in sediment provenance inferred from clay mineral changes to identify the most reliable AIO 14C ages for ice-sheet retreat. The palaeo-ice stream advanced through Belgica Trough after ~36.0 corrected 14C ka before present (B.P.). It retreated from the outer shelf at ~25.5 ka B.P., the middle shelf at ~19.8 ka B.P., the inner shelf in Eltanin Bay at ~12.3 ka B.P., and the inner shelf in Ronne Entrance at ~6.3 ka B.P.. The retreat of the WAIS and APIS occurred slowly and stepwise, and may still be in progress. This dynamical ice-sheet behaviour has to be taken into account for the interpretation of recent and the prediction of future mass-balance changes in the study area. The glacial history of the southern Bellingshausen Sea is unique when compared to other regions in West Antarctica, but some open questions regarding its chronology need to be addressed by future work.
Resumo:
Characteristic black nodules have been retrieved in 1922 from the bed of the Kichijo River, that runs along the Tanakamiyama mountain in the Oni Province and ends into Lake Biwa in Japan. Their radiocativity has been studied along with that of crusts of similar nature found covering rock formations in the vicinity overlooking the stream. The high content in radium observed may be due to the high uranium content of the granite host rock typical of the Tanakamiyama formation.
Resumo:
To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.
Resumo:
Ancient Lake Ohrid, located in the southern Balkan Peninsula in Macedonia and Albania is characterized by a high degree of endemism and it is considered to be the oldest lake in Europe. But its exact age (between one and ten million years) and also its origin are so far not known. To unravel these uncertainties an ICDP (International Continental Scientific Drilling Program) drilling project (Scientific Collaboration On Past Speciation Conditions in Ohrid (SCOPSCO)), started in April 2013. In addition to the investigations about the age and origin, other paleolimnological studies, e.g., the reconstruction of past climate and of past lake level changes, should be performed with the drilled cores. Used proxies in such paleolimnological studies are, e.g., ostracodes because they respond sensitively to environmental changes but an accurate knowledge of their preferences and tolerances to specific environmental conditions is necessary for this purpose. So far, this knowledge about the, mostly endemic, Ohrid ostracodes was limited. Thus, within the framework of this thesis, ostracodes and a multiplicity of environmental data were collected in Lake Ohrid and its adjacent waters during four field campaigns. In a total of 47 ostracode species could be detected in the entire study area and 32 of them were found alive in Lake Ohrid. Multivariate statistic identified that water depth, salinity, conductivity, pH, and dissolved oxygen were the main determining factors for ostracode distribution in the entire study area. In Lake Ohrid, the distribution was mainly controlled by water depth, water temperature, and pH. Some ostracodes were identified as strong indicator species for important environmental variables, e.g., water temperature and water depth. A distinctive feature of Lake Ohrid was the finding of the ostracode genus Amnicythere whose species normally inhabit oligo-(meso-)haline waters and this could point to a marine origin of the lake. So far, the specialized endemic ostracodes show the highest abundances and the greatest spatial distribution in Lake Ohrid but during the sampling eight widespread species were found for the first time in the lake. They inhabited mainly the northern part of the lake, where two cities are located and industry and agriculture play a major role, and they were limited to water depths above 50 m and this could be an evidence for an increasing anthropogenic pressure because widespread ostracode species often replace endemic species. To unravel the human impact on Lake Ohrid during the last decades short sediment cores were taken and the multi-proxy study indicated that the lake productivity between the early 1920s and the late 1980s was relatively low. Diatom assemblages indicate a rising productivity in the southern part of Lake Ohrid since the mid 1970s and geochemical proxies and ostracodes point to an increasing productivity since the late 1980s in the southern and in the northern part. A slight increase in the productivity continued until 2009. Noticeable is the fact that since the early 1990s, the increasing productivity and the increasing concentrations of heavy metals correspond to a decreasing number of ostracodes in the northern part of Lake Ohrid. Perhaps, this indicates that living conditions in this lake part became less favorable for the mostly endemic ostracode species. Furthermore, the sediment samples from the cores show relatively high concentrations of arsenic, iron, and nickel. Fluctuations in ostracode assemblages from three longer sediment cores, the longest spans approximately 136 ka, taken in Lake Ohrid, correspond to fluctuations in the productivity, in the carbonate content, of the lake level, and of climate changes. Between the marine isotope stage (MIS) 6 and MIS 2 the number of ostracode valves is very low or the valves were completely absent. This corresponds to a low lake productivity, a low carbonate content, and a low lake level. At the onset of the Holocene, the number of valves increased markedly and this correlates with an increased productivity and carbonate content and a warmer climate. But during the Little Ice Age (LIA), the number of valves dropped again and species which prefer warmer waters disappeared completely. This drop corresponds also to a low productivity. After the LIA, the number of species increased again but since 1895 AD a strong and abrupt decrease is visible. A reason for this could be an increase in the heavy metal concentrations.