204 resultados para Instructional constraints, standing broad jump, coordination changes, constraints-led approach


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A transfer function relating diatom assemblages in surface sediments and primary production in the photic zone was used to calculate variations in primary production in hole ODP Leg 112, Site 681A over the last 400 kyr. Primary production off central Peru was enhanced during peak glaciations and it decreased during peak interglacials, but low and high production periods also occurred in both glacials and interglacials. The close resemblance of the primary production curve off Peru to the atmospheric CO2 Vostok record suggests a relationship between the Peruvian neritic biological pump and atmospheric pCO2.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A large percentage of CO2 emitted into the atmosphere is absorbed by the oceans, causing chemical changes in surface waters known as ocean acidification (OA). Despite the high interest and increased pace of OA research to understand the effects of OA on marine organisms, many ecologically important organisms remain unstudied. Calcidiscus is a heavily calcified coccolithophore genus that is widespread and genetically and morphologically diverse. It contributes substantially to global calcium carbonate production, organic carbon production, oceanic carbon burial, and ocean-atmosphere CO2 exchange. Despite the importance of this genus, relatively little work has examined its responses to OA. We examined changes in growth, morphology, and carbon allocation in multiple strains of Calcidiscus leptoporus in response to ocean acidification. We also, for the first time, examined the OA response of Calcidiscus quadriperforatus, a larger and more heavily calcified Calcidiscus congener. All Calcidiscus coccolithophores responded negatively to OA with impaired coccolith morphology and a decreased ratio of particulate inorganic to organic carbon (PIC:POC). However, strains responded variably; C. quadriperforatus showed the most sensitivity, while the most lightly calcified strain of C. leptoporus showed little response to OA. Our findings suggest that calcium carbonate production relative to organic carbon production by Calcidiscus coccolithophores may decrease in future oceans and that Calcidiscus distributions may shift if more resilient strains and species become dominant in assemblages. This study demonstrates that variable responses to OA may be strain or species specific in a way that is closely linked to physiological traits, such as cellular calcite quota.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Decreases in seawater pH and carbonate saturation state (Omega) following the continuous increase in atmospheric CO2 represent a process termed ocean acidification, which is predicted to become a main threat to marine calcifiers in the near future. Segmented, tropical, marine green macro-algae of the genus Halimeda form a calcareous skeleton that involves biotically initiated and induced calcification processes influenced by cell physiology. As Halimeda is an important habitat provider and major carbonate sediment producer in tropical shallow areas, alterations of these processes due to ocean acidification may cause changes in the skeletal microstructure that have major consequences for the alga and its environment, but related knowledge is scarce. This study used scanning electron microscopy to examine changes of the CaCO3 segment microstructure of Halimedaopuntia specimens that had been exposed to artificially elevated seawater pCO2 of 650 µatm for 45 d. In spite of elevated seawater pCO2, the calcification of needles, located at the former utricle walls, was not reduced as frequent initiation of new needle-shaped crystals was observed. Abundance of the needles was 22 %/µm**2 higher and needle crystal dimensions 14 % longer. However, those needles were 42 % thinner compared with the control treatment. Moreover, lifetime cementation of the segments decreased under elevated seawater pCO2 due to a loss in micro-anhedral carbonate as indicated by significantly thinner calcified rims of central utricles (35-173 % compared with the control treatment). Decreased micro-anhedral carbonate suggests that seawater within the inter-utricular space becomes CaCO3 undersaturated (Omega < 1) during nighttime under conditions of elevated seawater pCO2, thereby favoring CaCO3 dissolution over micro-anhedral carbonate accretion. Less-cemented segments of H. opuntia may impair the environmental success of the alga, its carbonate sediment contribution, and the temporal storage of atmospheric CO2 within Halimeda-derived sediments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH 8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH 7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Samples of recent to Miocene fish and marine mammal bones from the bottom of the Atlantic and Pacific Oceans and Miocene Maikop deposits (Transcaspian region) are studied by X-ray diffraction technique combined with chemical and energy-dispersive analyses. Changes of lattice parameters and chemical composition of bioapatite during fossilization and diagenesis suggest that development of skeletal apatite proceeds from dahllite-type hydroxyapatite to francolite-type carbonate-fluorapatite. It is assumed that jump-type transition from dahllite to francolite during initial fossilization reflects replacement of biogeochemical reactions in living organisms, which are subject to nonlinear laws of nonequilibrium thermodynamics, by physicochemical processes according to the linear equilibrium thermodynamics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The neodymium isotopic composition of marine precipitates is increasingly recognized as a powerful tool for identifying changes in ocean circulation and mixing on million year to millennial timescales. Unlike nutrient proxies such as ?13C or Cd/Ca, Nd isotopes are not thought to be altered in any significant way by biological processes, and thus they can serve as a quasi-conservative water mass tracer. However, the application of Nd isotopes in understanding the role of thermohaline circulation in rapid climate change is currently hindered by the lack of direct constraints on the signature of the North Atlantic end-member through time. Here we present the first results of Nd isotopes measured in U-Th-dated deep-sea corals from the New England seamounts in the northwest Atlantic Ocean. Our data are consistent with the conclusion that the Nd isotopic composition of North Atlantic deep and intermediate water has remained nearly constant through the last glacial cycle. The results address long-standing concerns that there may have been significant changes in the Nd isotopic composition of the North Atlantic end-member during this interval and substantiate the applicability of this novel tracer on millennial timescales for paleoceanography research.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.