Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient


Autoria(s): Pettit, Laura Rachel; Smart, Christopher W; Hart, Malcom B; Milazzo, Marco; Hall-Spencer, Jason M
Data(s)

28/05/2015

Resumo

Ocean acidification causes biodiversity loss, alters ecosystems, and may impact food security, as shells of small organisms dissolve easily in corrosive waters. There is a suggestion that photosynthetic organisms could mitigate ocean acidification on a local scale, through seagrass protection or seaweed cultivation, as net ecosystem organic production raises the saturation state of calcium carbonate making seawater less corrosive. Here, we used a natural gradient in calcium carbonate saturation, caused by shallow-water CO2 seeps in the Mediterranean Sea, to assess whether seaweed that is resistant to acidification (Padina pavonica) could prevent adverse effects of acidification on epiphytic foraminifera. We found a reduction in the number of species of foraminifera as calcium carbonate saturation state fell and that the assemblage shifted from one dominated by calcareous species at reference sites (pH 8.19) to one dominated by agglutinated foraminifera at elevated levels of CO2 (pH 7.71). It is expected that ocean acidification will result in changes in foraminiferal assemblage composition and agglutinated forms may become more prevalent. Although Padina did not prevent adverse effects of ocean acidification, high biomass stands of seagrass or seaweed farms might be more successful in protecting epiphytic foraminifera.

Formato

text/tab-separated-values, 42780 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.846530

doi:10.1594/PANGAEA.846530

Idioma(s)

en

Publicador

PANGAEA

Relação

Gattuso, Jean-Pierre; Epitalon, Jean-Marie; Lavigne, Héloise (2015): seacarb: seawater carbonate chemistry with R. R package version 3.0.6. https://cran.r-project.org/package=seacarb

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Pettit, Laura Rachel; Smart, Christopher W; Hart, Malcom B; Milazzo, Marco; Hall-Spencer, Jason M (2015): Seaweed fails to prevent ocean acidification impact on foraminifera along a shallow-water CO2 gradient. Ecology and Evolution, 5(9), 1784-1793, doi:10.1002/ece3.1475

Palavras-Chave #Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Individuals; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Percentage; pH; Potentiometric; Potentiometric titration; Salinity; Species; Temperature, water
Tipo

Dataset