724 resultados para 162-984A


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During Ocean Drilling Program Leg 199 in the equatorial Pacific, visible and near-infrared spectroscopy (VNIS) was used to measure the reflectance spectra (350-2500 nm) of 1343 sediment samples. Reflectance spectra were also measured for a suite of 60 samples of known mineralogy, thereby providing a local ground-truth calibration of spectral features to percentages of calcite, opal, smectite, and illite. The associated algorithm was used to calculate mineral percentages from the 1343 spectra. Using multiple regression and VNIS mineralogy, multisensor track physical properties and light spectroscopy data were then converted into continuous high-resolution mineralogy logs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conversion of surface water to deep water in the North Atlantic results in the release of heat from the ocean to the atmosphere, which may have amplified millennial-scale climate variability during glacial times (Broecker et al., 1990, doi:10.1029/PA005i004p00469) and could even have contributed to the past 11,700 years of relatively mild climate (known as the Holocene epoch) (Bond et al., 2001, doi:10.1126/science.1065680; Alley et al., 1997, doi:10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2; Keigwin and Boyle, 2000, doi:10.1073/pnas.97.4.1343). Here we investigate changes in the carbon-isotope composition of benthic foraminifera throughout the Holocene and find that deep-water production varied on a centennial-millennial timescale. These variations may be linked to surface and atmospheric events that hint at a contribution to climate change over this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The grain size of deep-sea sediments provides an apparently simple proxy for current speed. However, grain size-based proxies may be ambiguous when the size distribution reflects a combination of processes, with current sorting only one of them. In particular, such sediment mixing hinders reconstruction of deep circulation changes associated with ice-rafting events in the glacial North Atlantic because variable ice-rafted detritus (IRD) input may falsely suggest current speed changes. Inverse modeling has been suggested as a way to overcome this problem. However, this approach requires high-precision size measurements that register small changes in the size distribution. Here we show that such data can be obtained using electrosensing and laser diffraction techniques, despite issues previously raised on the low precision of electrosensing methods and potential grain shape effects on laser diffraction. Down-core size patterns obtained from a sediment core from the North Atlantic are similar for both techniques, reinforcing the conclusion that both techniques yield comparable results. However, IRD input leads to a coarsening that spuriously suggests faster current speed. We show that this IRD influence can be accounted for using inverse modeling as long as wide size spectra are taken into account. This yields current speed variations that are in agreement with other proxies. Our experiments thus show that for current speed reconstruction, the choice of instrument is subordinate to a proper recognition of the various processes that determine the size distribution and that by using inverse modeling meaningful current speed reconstructions can be obtained from mixed sediments.