64 resultados para Terrestrial mammals
Resumo:
An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.
Resumo:
Pumas are one of the most studied terrestrial mammals because of their widespread distribution, substantial ecological impacts, and conflicts with humans. Extensive efforts, often employing genetic methods, are undertaken to manage this species. However, the comparison of population genetic data is difficult because few of the microsatellite loci chosen are shared across research programs. Here, we describe the development of PumaPlex, a high-throughput assay to genotype 25 single nucleotide polymorphisms in pumas. We validated PumaPlex in more than 700 North American pumas (Puma concolor couguar), and demonstrated its ability to generate reproducible genotypes and accurately identify individuals. Furthermore, we compared PumaPlex with traditional genotyping of 12 microsatellite loci in fecal DNA samples and found that PumaPlex produced significantly more genotypes with fewer false alleles. PumaPlex promotes the cross-laboratory comparison of genotypes, is easily expandable in the future, and is a valuable tool for the genetic monitoring and management of North American puma populations.
Resumo:
The Nihewan Beds at Yangyuan reflect apparently continuous, high-resolution deposition of fluvial-lacustrine sediment in the climatically important loess deposit regions of north China. The Hutouliang section forms the upper portion of Nihewan Beds deposited during the Brunhes magnetic polarity chron. Lightness values measured on successive samples display similar variability to the aeolian flux record of oceanic sediment core V21-146 located downwind from this area in the North Pacific. The oxygen isotope timescale of core V21-146 was transferred to the lightness curve to provide a preliminary timescale allowing more detailed age control in the Hutouliang section. This timescale will provide useful assistance in dating boundary ages of the loess-soil sequence in China and interpreting regional climatic data.
Resumo:
The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.
Resumo:
Here we use compound-specific hydrogen isotope data of aquatic and terrestrial lipid biomarkers from precisely dated annually laminated sediments from Lake Meerfelder Maar (MFM) in Western Germany to reconstruct decadal resolved hydroclimatic changes during the Younger Dryas. We show that cooling at MFM begun synchronous to the onset of cooling in Greenland at 12.850 years BP. Major environmental changes at MFM however took place 170 years later as a result of substantially drier conditions.
Resumo:
Sparse terrestrial palynomorphs (spores and pollen) were recovered from glacigene Lower Miocene and Oligocene core samples from the Cape Roberts Project (CRP) drillhole CRP-2/2A, Victoria Land Basin, Antarctica. Rarity of palynomorphs probably results from the spares periglacial vegetation in the surrounding landscape at the time of deposition, as well as dilution from rapid sediment accumulation. The Miocene and Late Oligocene vegetation is interpreted as including herb-moss tundra with low-growing woody plants (including Nothofagus and podocarp conifers) in more protected areas, similar to that encountered in the Miocene of CRP-1. Species richness and numbers of specimens increase downhole, a trend that begins very gradually below ~307 mbsf, and increases below ~443 mbsf through the Early Oligocene. These lower assemblages reflect low diversity woody vegetation dominated by several species of Nofhofagus and podocarps, growing in somewhat milder conditions, though still cold temperate to periglacial in the Early Oligocene. The CRP-2/2A core provides new biostratigraphical information, such as the First Appearance Datums (FADS) of Tricolpites sp. a near the Oligocene/Miocene boundary, and Marchantiaceae in the Early/Late Oligocene transition: these are taxa that along with N. lachlaniae, Coptospora spp. and Podocarpidites sp.b characterize assemblages recovered from outcrops of the Pliocene Sirius Group in the Transantarctic Mountains. Some elements of the extremely hardy periglacial tundra vegetation that survived in Antarctica into the Pliocene had their origin in the Oligocene during a time of deteriorating (colder, drier) climatic conditions. The CRP results highlight the long persistence of this tundra vegetation, through approximately 30 million years of dynamically changing climatic conditions. Rare Jurassic and more common Permian-Triassic spores and pollen occur sporadically throughout the core. These are derived from Jurassic Ferrar Group sediments, and from the Permian-Triassic Victoria Group, upper Beacon Supergroup. Higher frequencies of reworked Beacon palynomorphs and coaly organic matter below ~307 mbsf indicate greater erosion of the Beacon Supergroup for this lower part of the core. A color range from black, severely metamorphosed specimens, to light-colored, yellow (indicating low thermal alteration), reworked Permian palynomorphs, indicates local provenance in the dolerite-intruded Beacon strata of the Transantarctic Mountains, as well as areas (now sub-ice) of Beacon strata with little or no associated dolerite well inland (cratonwards) of the present Transantarctic Mountains.
Resumo:
Little is known about the prevalence of the parasite Toxoplasma gondii in the arctic marine food chain of Svalbard, Norway. In this study, plasma samples were analyzed for T. gondii antibodies using a direct agglutination test. Antibody prevalence was 45.6% among polar bears (Ursus maritimus), 18.7% among ringed seals (Pusa hispida) and 66.7% among adult bearded seals (Erignathus barbatus) from Svalbard, but no sign of antibodies were found in bearded seal pups, harbour seals (Phoca vitulina), white whales (Delphinapterus leucas) or narwhals (Monodon monoceros) from the same area. Prevalence was significantly higher in male polar bears (52.3%) compared with females (39.3%), likely due to dietary differences between the sexes. Compared to an earlier study, T. gondii prevalence in polar bears has doubled in the past decade. Consistently, an earlier study on ringed seals did not detect T. gondii. The high recent prevalence in polar bears, ringed seals and bearded seals could be caused by an increase in the number or survivorship of oocysts being transported via the North Atlantic Current to Svalbard from southern latitudes. Warmer water temperatures have led to influxes of temperate marine invertebrate filter-feeders that could be vectors for oocysts and warmer water is also likely to favour higher survivorship of oocycts. However, a more diverse than normal array of migratory birds in the Archipelago recently, as well as a marked increase in cruise-ship and other human traffic are also potential sources of T. gondii.