39 resultados para SLASHED HALF-NORMAL DISTRIBUTION
Resumo:
This paper assesses the along strike variation of active bedrock fault scarps using long range terrestrial laser scanning (t-LiDAR) data in order to determine the distribution behaviour of scarp height and the subsequently calculate long term throw-rates. Five faults on Cretewhich display spectacular limestone fault scarps have been studied using high resolution digital elevation model (HRDEM) data. We scanned several hundred square metres of the fault system including the footwall, fault scarp and hanging wall of the investigated fault segment. The vertical displacement and the dip of the scarp were extracted every metre along the strike of the detected fault segment based on the processed HRDEM. The scarp variability was analysed by using statistical and morphological methods. The analysis was done in a geographical information system (GIS) environment. Results show a normal distribution for the scanned fault scarp's vertical displacement. Based on these facts, the mean value of height was chosen to define the authentic vertical displacement. Consequently the scarp can be divided into above, below and within the range of mean (within one standard deviation) and quantify the modifications of vertical displacement. Therefore, the fault segment can be subdivided into areas which are influenced by external modification like erosion and sedimentation processes. Moreover, to describe and measure the variability of vertical displacement along strike the fault, the semi-variance was calculated with the variogram method. This method is used to determine how much influence the external processes have had on the vertical displacement. By combining of morphological and statistical results, the fault can be subdivided into areas with high external influences and areas with authentic fault scarps, which have little or no external influences. This subdivision is necessary for long term throw-rate calculations, because without this differentiation the calculated rates would be misleading and the activity of a fault would be incorrectly assessed with significant implications for seismic hazard assessment since fault slip rate data govern the earthquake recurrence. Furthermore, by using this workflow areas with minimal external influences can be determined, not only for throw-rate calculations, but also for determining samples sites for absolute dating techniques such as cosmogenic nuclide dating. The main outcomes of this study include: i) there is no direct correlation between the fault's mean vertical displacement and dip (R² less than 0.31); ii) without subdividing the scanned scarp into areas with differing amounts of external influences, the along strike variability of vertical displacement is ±35%; iii) when the scanned scarp is subdivided the variation of the vertical displacement of the authentic scarp (exposed by earthquakes only) is in a range of ±6% (the varies depending on the fault from 7 to 12%); iv) the calculation of the long term throw-rate (since 13 ka) for four scarps in Crete using the authentic vertical displacement is 0.35 ± 0.04 mm/yr at Kastelli 1, 0.31 ± 0.01 mm/yr at Kastelli 2, 0.85 ± 0.06 mm/yr at the Asomatos fault (Sellia) and 0.55 ± 0.05 mm/yr at the Lastros fault.
Resumo:
Methane hydrates are present in marine seep systems and occur within the gas hydrate stability zone. Very little is known about their crystallite sizes and size distributions because they are notoriously difficult to measure. Crystal size distributions are usually considered as one of the key petrophysical parameters because they influence mechanical properties and possible compositional changes, which may occur with changing environmental conditions. Variations in grain size are relevant for gas substitution in natural hydrates by replacing CH4 with CO2 for the purpose of carbon dioxide sequestration. Here we show that crystallite sizes of gas hydrates from some locations in the Indian Ocean, Gulf of Mexico and Black Sea are in the range of 200-400 µm; larger values were obtained for deeper-buried samples from ODP Leg 204. The crystallite sizes show generally a log-normal distribution and appear to vary sometimes rapidly with location.
Resumo:
The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.
Resumo:
New paleomagnetic and paleontologic data from Pacific DSDP Sites 463 and 167 define the magnetic reversals that predate the Cretaceous Normal Polarity Superchron (K-N). Data from Mid-Pacific Mountain Site 463 provide the first definition of polarity chron M0 in the Pacific deep-sea sedimentary record. Foraminiferal biostratigraphy suggests that polarity chron M0 is contained entirely within the lower Aptian Hedbergella similis Zone, in agreement with foraminiferal data from the Italian Southern Alps and Atlantic Ocean. Nannofossil assemblages also suggest an early Aptian age for polarity chron M0, contrary to results from the Italian Umbrian Apennines and Southern Alps, which place polarity chron M0 on the Barremian-Aptian boundary. Biostratigraphic dating discrepancies caused by the time-transgressive, preservational, or provincial nature of paleontological species might be reconciled by the use of magnetostratigraphy, specifically polarity chron M0 which lies close to the Barremian-Aptian boundary. At Magellan Rise Site 167, five reversed polarity zones are recorded in Hauterivian to Aptian sediments. Correlation with M-anomalies is complicated by synsedimentary and postsedimentary sliding about 25 m.y. after basement formation, producing gaps in, and duplications of, the stratigraphic sequence. The magnitude and timing of such sliding must be addressed when evaluating the stratigraphy of these oceanic-rise environments.
Resumo:
The CaCO3-contents and the fractions > 40 µm have been analysed from 5 kastenloten, one piston core and two kastengreifer taken between Senegal and Cape Verde Islands. Numerous benthonic and planktonic organisms and different terrigenous components have been distinguished. The four cores off Senegal reach middle Wuerm sediments; cores GIK12329-6 and TAG72-1 reach the V-zone and core GIK12331-4 the X-zone (Eem); the two kastengreifer contain sediments of Holocene age. Correlation of the cores has been made. Holocene sedimentation rates decrease from the shallow cores (6-11 cm/1000 years) to the deep-sea (1-2 cm/1000 years). The following climatic variations could be deduced from the sediments off the Senegal: during Holocene climate was in general as today, the Senegal river transporting fine grained material to the sea. The upper Wuerm was arid with no river influence but with red dune sand transported to the continental slope. During middle Wuerm the climate was humid again. The deep-sea cores have been influenced by eolian material from arid regions during glacial and interglacial periods, indicated by relatively high "Wuestenquarz-numbers". However, during Wuerm "Wuestenquarz-numbers" are higher than during Holocene and Eem, indicating that more intensely red coloured sediment was exposed to wind activity on the continent during this period. Varying amounts of terrigenous material and CaCO3-contents indicate varying wind strengths (lower in Holocene and Eem than during Wuerm). The boundary between humid and arid Wuerm climate was at approximately 20 °N. Influence of upwelling is difficult to establish in the sediments off Senegal, because river influence, while increasing fertility also dilutes the diatoms which are typical for upwelling. High amounts of organic carbon, low plankton/benthos ratios of foraminifers and low plankton foraminifer/radiolarian ratios in Holocene sections might be interpreted as influenced by upwelling. Turbidites occur in cores 72 and 31 and at the Holocene/Pleistocene boundary of core GIK12329-6. Their composition indicates provenance from the continental shelf of the Cape Verde Islands for core 31 and the continental shelf and slope off Senegal for core TAG72-1. Volcanic material, rare in the normal pelagic sediment of core GIK12331-4 is more frequent in the turbidites.
Resumo:
The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.
Resumo:
A 100-m-thick Paleocene sequence of mainly pelagic sediments at ODP Site 1121, on the eastern flanks of the Campbell Plateau, contains few to common radiolarians of relatively low diversity in the lower 40 m (Early to early Late Paleocene) and abundant, diverse radiolarian assemblages in the upper 60 m (mid-Late Paleocene). The 150 taxa recorded from the entire Paleocene interval are thought to under-represent the actual species diversity by at least one half as many morphotypes have not been differentiated below the level of genus. Assemblages in the lower 40 m are similar to those described from onland New Zealand and DSDP Site 208 (northern Lord Howe Rise); they are correlated with South Pacific radiolarian zones RP4 and RP5. Assemblages in the upper 60 m differ from other known Late Paleocene assemblages in the great abundance of plagiacanthids and cycladophorids. Similarities are noted with later Cenozoic cool-water assemblages. This upper interval is correlated with South Pacific zone RP6, as revised herein, based on comparison with faunas from Site 208 and Marlborough, New Zealand. The interval is also correlated with the upper part of North Atlantic zone RP6 (RP6b-c) based on the presence of Aspis velutochlamydosaurus, Plectodiscus circularis and Pterocodon poculum. Other species, such as Buryella tetradica and Buryella pentadica, are valuable for local correlation but exhibit considerable diachroneity between the Pacific, Indian and Atlantic Oceans. An age model for the Paleocene interval at Site 1121, based on well-constrained nannofossil and radiolarian datums, indicates that the rate of compacted sediment accumulation doubles from 15 to 30 mm/ka at the RP5/RP6 zonal boundary. In large part this is due to a sudden and pronounced increase in accumulation rates for all siliceous fossils; radiolarians and larger diatoms increase from <100 to >10 000 specimens/cm2/ka. This apparent increase in biosiliceous productivity is age-equivalent to a mid-Paleocene cooling event (57-59 Ma) identified from global stable isotope records that is associated with the heaviest delta13C values for the entire Cenozoic.
Resumo:
The vegetation pattern of siliceous boulder snow beds (Dicranoweision crispulae all. nov. prov.) of Svalbard was investigated by using transect studies in several places on Spitsbergen. Dicranoweisia crispula is the best diagnostic species. It is found throughout the whole snow bed, is a good differential species against Racomitrium lanuginosum communities above the snow bed, and does not occur on basic rocks. Three Andreaea spp. are also among the most important members of these communities. They are all acidophilous, but with different pH preferences. Eight weakly acidophilous species lacking both on basic and on gneissic/granitic rocks, are reported from Svalbard. Half of these are characteristic species of Dicranoweision crispulae on Svalbard.