282 resultados para PM2.5, SO2, CO2, NOx
Resumo:
Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan-Sahelian country (Bamako, Mali) between September 2012 - July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 - 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory reaction, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara-Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.
Resumo:
From November 2004 to December 2007, size-segregated aerosol samples were collected all-year-round at Dome C (East Antarctica) by using PM10 and PM2.5 samplers, and multi-stage impactors. The data set obtained from the chemical analysis provided the longest and the most time-resolved record of sea spray aerosol (sea salt Na+) in inner Antarctica. Sea spray showed a sharp seasonal pattern. The highest values measured in winter (Apr-Nov) were about ten times larger than in summer (Dec-Mar). For the first time, a size-distribution seasonal pattern was also shown: in winter, sea spray particles are mainly submicrometric, while their summer size-mode is around 1-2 µm. Meteorological analysis on a synoptic scale allowed the definition of atmospheric conditions leading sea spray to Dome C. An extreme-value approach along with specific environmental based criteria was taken to yield stronger fingerprints linking atmospheric circulation (means and anomalies) to extreme sea spray events. Air mass back-trajectory analyses for some high sea spray events allowed the identification of two major air mass pathways, reflecting different size distributions: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The seasonal pattern of the SO4**2- /Na+ ratio enabled the identification of few events depleted in sulphate, with respect to the seawater composition. By using methanesulphonic acid (MSA) profile to evaluate the biogenic SO4**2- contribution, a more reliable sea salt sulphate was calculated. In this way, few events (mainly in April and in September) were identified originating probably from the "frost flower" source. A comparison with daily-collected superficial snow samples revealed that there is a temporal shift between aerosol and snow sea spray trends. This feature could imply a more complex deposition processes of sea spray, involving significant contribution of wet and diamond dust deposition, but further work has to be carried out to rule out the effect of wind re-distribution and to have more statistic significance.
The CCRUSH Study: Coarse and fine particulate matter measurements in northeastern Colorado 2009-2012
Resumo:
Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg/m**3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m/s. Little wind speed dependence was observed for the residential sites in Denver and Greeley.
Resumo:
We present new d13C measurements of atmospheric CO2 covering the last glacial/interglacial cycle, complementing previous records covering Terminations I and II. Most prominent in the new record is a significant depletion in d13C(atm) of 0.5 permil occurring during marine isotope stage (MIS) 4, followed by an enrichment of the same magnitude at the beginning of MIS 3. Such a significant excursion in the record is otherwise only observed at glacial terminations, suggesting that similar processes were at play, such as changing sea surface temperatures, changes in marine biological export in the Southern Ocean (SO) due to variations in aeolian iron fluxes, changes in the Atlantic meridional overturning circulation, upwelling of deep water in the SO, and long-term trends in terrestrial carbon storage. Based on previous modeling studies, we propose constraints on some of these processes during specific time intervals. The decrease in d13C(atm) at the end of MIS 4 starting approximately 64 kyr B.P. was accompanied by increasing [CO2]. This period is also marked by a decrease in aeolian iron flux to the SO, followed by an increase in SO upwelling during Heinrich event 6, indicating that it is likely that a large amount of d13C-depleted carbon was transferred to the deep oceans previously, i.e., at the onset of MIS 4. Apart from the upwelling event at the end of MIS 4 (and potentially smaller events during Heinrich events in MIS 3), upwelling of deep water in the SO remained reduced until the last glacial termination, whereupon a second pulse of isotopically light carbon was released into the atmosphere.
Resumo:
During CO2 storage operations in mature oilfields or saline aquifers it is desirable to trace the movement of injected CO2 for verification and safety purposes. We demonstrate the successful use of carbon isotope abundance ratios for tracing the movement of CO2 injected at the Cardium CO2 Storage Monitoring project in Alberta between 2005 and 2007. Injected CO2 had a d13C value of -4.6±1.1 per mil that was more than 10 per mil higher than the carbon isotope ratios of casing gas CO2 prior to CO2 injection with average d13C values ranging from -15.9 to -23.5 per mil. After commencement of CO2 injection, d13C values of casing gas CO2 increased in all observation wells towards those of the injected CO2 consistent with a two-source end-member mixing model. At four wells located in a NE-SW trend with respect to the injection wells, breakthrough of injected CO2 was registered chemically (>50 mol % CO2) and isotopically 1-6 months after commencement of CO2 injection resulting in cumulative CO2 fluxes exceeding 100000 m**3 during the observation period. At four other wells, casing gas CO2 contents remained below 5 mol % resulting in low cumulative CO2 fluxes (<2000 m**3) throughout the entire observation period, but carbon isotope ratios indicated contributions between <30 and 80% of injected CO2. Therefore, we conclude that monitoring the movement of CO2 in the injection reservoir with geochemical and isotopic techniques is an effective approach to determine plume expansion and to identify potential preferential flow paths provided that the isotopic composition of injected CO2 is constant and distinct from that of baseline CO2.
Resumo:
It is still an open question how equilibrium warming in response to increasing radiative forcing - the specific equilibrium climate sensitivity S - depends on background climate. We here present palaeodata-based evidence on the state dependency of S, by using CO2 proxy data together with a 3-D ice-sheet-model-based reconstruction of land ice albedo over the last 5 million years (Myr). We find that the land ice albedo forcing depends non-linearly on the background climate, while any non-linearity of CO2 radiative forcing depends on the CO2 data set used. This non-linearity has not, so far, been accounted for in similar approaches due to previously more simplistic approximations, in which land ice albedo radiative forcing was a linear function of sea level change. The latitudinal dependency of ice-sheet area changes is important for the non-linearity between land ice albedo and sea level. In our set-up, in which the radiative forcing of CO2 and of the land ice albedo (LI) is combined, we find a state dependence in the calculated specific equilibrium climate sensitivity, S[CO2,LI], for most of the Pleistocene (last 2.1 Myr). During Pleistocene intermediate glaciated climates and interglacial periods, S[CO2,LI] is on average ~ 45 % larger than during Pleistocene full glacial conditions. In the Pliocene part of our analysis (2.6-5 Myr BP) the CO2 data uncertainties prevent a well-supported calculation for S[CO2,LI], but our analysis suggests that during times without a large land ice area in the Northern Hemisphere (e.g. before 2.82 Myr BP), the specific equilibrium climate sensitivity, S[CO2,LI], was smaller than during interglacials of the Pleistocene. We thus find support for a previously proposed state change in the climate system with the widespread appearance of northern hemispheric ice sheets. This study points for the first time to a so far overlooked non-linearity in the land ice albedo radiative forcing, which is important for similar palaeodata-based approaches to calculate climate sensitivity. However, the implications of this study for a suggested warming under CO2 doubling are not yet entirely clear since the details of necessary corrections for other slow feedbacks are not fully known and the uncertainties that exist in the ice-sheet simulations and global temperature reconstructions are large.