26 resultados para Lithification
Resumo:
Petrographic descriptions and stable oxygen and carbon isotope compositions of microsamples of Campanian-age sediment gravity-flow deposits from Northeast Providence Channel, Bahamas, indicate deep-marine cementation of shallow-marine skeletal grains that were transported to the channel during the Late Cretaceous. Shallow-marine components are represented by mollusks, especially rudists, and shallow-water benthic foraminifers as well as sparse echinoderm and algal grains. The sole evidence of diagenesis in shallow-marine environments consists of micrite envelopes around skeletal grains. Shallow-marine skeletal grains have mean stable isotope values of -3.1 per mil d18O and +2.6 per mil d13C. The d18O values are consistent with precipitation in equilibrium with warm (20°-30°C), shallow-marine water. Deep-marine components are represented by equant calcite spar cements and rip-up clasts of slope sediments. Spar cements, exhibiting hexagonal morphology with scalenohedral terminations, most commonly occur as thin isopachous linings in the abundant porosity. Deep-marine cements have mean stable isotope values of - 1.1 per mil d18O and +2.7 per mil d13C. Deep-marine cements are 18O-enriched relative to shallow-marine skeletal grains, consistent with precipitation in equilibrium with colder (10°-20°C), deep-marine waters. The cement .source during lithification appears to have been dissolution of aragonite and high-magnesium calcite skeletal grains, which made up part of the transported sediment. Interbedded periplatform ooze remains uncemented, or poorly cemented, probably because of lower permeability. Equant spar cements that occur in gravity-flow deposits recovered from Hole 634A have stable isotope compositions similar to spars in Lower and mid-Cretaceous shallow-water limestones exposed on the Bahama Escarpment, to Campanian-Paleocene deep-marine hardgrounds recovered during DSDP Leg 15 in the Caribbean, and to spars in Aptian-Albian talus deposits at the base of the Campeche Escarpment recovered during DSDP Leg 77.
Resumo:
An intensive mineralogic and geochemical investigation was conducted on sediments recovered during Ocean Drilling Program Leg 166 from the western Great Bahama Bank at Sites 1006, 1008, and 1009. Pleistocene through middle Miocene sediments recovered from Site 1006, the distal location on the Leg 166 transect, are a mixture of bank-derived and pelagic carbonates with lesser and varying amounts of siliciclastic clays. A thick sequence of Pleistocene periplatform carbonates was recovered near the platform edge at Sites 1008 and 1009. Detailed bulk mineralogic, elemental (Ca, Mg, Sr, and Na), and stable isotopic (d18O and d13C) analyses of sediments are presented from a total of 317 samples from all three sites.
Resumo:
A total of 1547 thermal conductivity values were determined by both the NP (needle probe method) and the QTM (quick thermal conductivity meter) on 1319 samples recovered during DSDP Leg 60. The NP method is primarily for the measurement of soft sedimentary samples, and the result is free from the effect of porewater evaporation. Measurement by the QTM method is faster and is applicable to all types of samples-namely, sediments (soft, semilithified, and lithified) and basement rocks. Data from the deep holes at Sites 453, 458, and 459 show that the thermal conductivity increases with depth, the rate of increase ranging from (0.18 mcal/cm s °C)/100 m at Site 459 to (0.72 mcal/cm s °C)/100 m at Site 456. A positive correlation between the sedimentary accumulation rate and the rate of thermal conductivity increase with depth indicates that both compaction and lithification are important factors. Drilled pillow basalts show nearly uniform thermal conductivity. At She 454 the thermal conductivity of one basaltic flow unit was higher near the center of the unit and lower toward the margin, reflecting variable vesicularity. Hydrothermally altered basalts at Site 456 showed higher thermal conductivity than fresh basalt because secondary calcite, quartz, and pyrite are generally more thermally conductive than fresh basalt. The average thermal conductivity in the top 50 meters of sediments correlates inversely with water depth because of dissolution of calcite, a mineral with high thermal conductivity, from the sediments as the water depth exceeds the lysocline and the carbonate compensation depth. Differences between the Mariana Trench data and the Mariana Basin and Trough data may reflect different abundances of terrigenous material in the sediment. There are remarkable correlations between thermal conductivity and other physical properties. The relationship between thermal conductivity and compressional wave velocity can be used to infer the ocean crustal thermal conductivity from the seismic velocity structure.
Resumo:
The core descriptions (chapter 7) summarize the most important results of the analysis of each sediment core following procedures applied during ODP/IODP expeditions. All cores were opened, described, and color-scanned. In the core descriptions the first column displays the lithological data that are based on visual analysis of the core and are supplemented by information from binocular and smear slide analyses. The sediment classification largely follows ODP/IODP convention. Lithological names consist of a principal name based on composition, degree of lithification, and/or texture as determined from visual description and microscopic observations. In the structure column the intensity of bioturbation together with individual or special features (turbidites, volcanic ash layers, plant debris, shell fragments, etc.) is shown. The hue and chroma attributes of color were determined by comparison with the Munsell soil color charts and are given in the color column in the Munsell notation. A GretagMacbethTM Spectrolino spectrophotometer was used to measure percent reflectance values of sediment color at 36 wavelength channels over the visible light range (380-730 nm) on all of the cores. The digital reflectance data of the spectrophotometer readings were routinely obtained from the surface (measured in 1 cm steps) of the split cores (archive half). The Spectrolino is equipped with a measuring aperture with folding mechanism allowing an exact positioning on the split core and is connected to a portable computer. The data are directly displayed within the software package Excel and can be controlled simultaneously. From all the color measurements, for each core the red/blue ratio (700 nm/450 nm) and the lightness are shown together with the visual core description. The reflectance of individual wavelengths is often significantly affected by the presence of minor amounts of oxyhydroxides or sulphides. To eliminate these effects, we used the red/blue ratio and lightness.
Resumo:
Within a dipping sequence of middle Cretaceous to Eocene sediments on Broken Ridge, opal-A, opal-CT, and quartz occur as minor constituents in carbonate and ash-rich sediments. Biogenic opal-A is mainly derived from diatoms and radiolarians. Opal-A and almost all siliceous microfossils disappear within a narrow (<20-m-thick) transition zone below which authigenic opal-CT and quartz are present. These latter silica polymorphs occur together within a 750-m-thick interval, but the ratio of quartz/opal-CT increases with increasing age and depth within the pre-rift sediment sequence. The boundary between opal-A- and opal-CT-bearing sediments is also a physical boundary at which density, P-wave velocity, and acoustic impedance change. This physical transition is probably caused by infilling of pore space by opal-CT lepispheres.
Resumo:
During drilling in the Gulf of California, diagenetic carbonate rocks were recovered at 7 out of 8 sites. These are primarily dolomites which record 13C isotopic evidence of the incorporation of carbon derived from the decomposition of organic matter. In Hole 479, drilled to a sub-bottom depth of 440 meters on the Guaymas Slope, under a fertile upwelling belt, we recognized an excellent example of deep sea dolomitization in progress. This Quaternary section of organic-carbon- rich, low-carbonate, hemipelagic diatomaceous oozes contains numerous fine-grained, decimeter-thin, episodic beds of dolomite, which show sedimentologic, geochemical, and isotopic evidence of accretion by precipitation below 40 meters sub-bottom in zones of high alkalinity and low sulfate. The beds preserve original sedimentary structures. Carbon-13 varies from +3 to +14 per mil, indicating biogenic CO2 reservoirs related to active methanogenesis. In single beds, 18O values range outwardly from +5 to -7 per mil, reflecting increasing temperature with progressive accretion of dolomite with depth; the values parallel progressive trends in lithification, texture, mineralogy, and fossil preservation. We estimate slow accretion rates on the order of 0.1-0.7 mm/10**3 yr. with burial. Dolomitization does not proceed merely at the expense of nearby nannofossils. Ca and Mg ions must be derived from interstitial waters. The episodic appearance of beds in the sequence seems partly a reflection of latent climate signals. This process of deep sea dolomitization carries implications for hydrocarbon migration, as well as an interpretation of the presence of dolomite in other modern and ancient pelagic to hemipelagic sediment sequences.
Resumo:
A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICP-MS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/70Ge ratios are expressed as d74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2? for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4? in d74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/70Ge, 73Ge/70Ge and 72Ge/70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of d74Ge in igneous rocks is only 0.25? without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a d74Ge of 1.3+/-0.2? can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher d74Ge values between 2.0? and 3.0?. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the d74Ge of the seawater to +3.0?.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have d74Ge values ranging from 0.7? to 2.0?. The variable values of the cherts cannot be explained by binary mixing between a biogenic component and a detrital component and are suggestive of enrichment in the light isotope of diagenetic quartz. Further work is now required to determine Ge isotope fractionation by siliceous organisms and to investigate the effect of diagenetic processes during chert lithification.
Resumo:
1. Great Meteor Seamount (GMS) is a very large (24,000 km**3) guyot with a flat summit plateau at 330-275 m; it has a volcanic core, capped by 150-600 m of post-Middle-Miocene carbonate and pyroclastic rocks, and is covered by bioclastic sands. The much smaller Josephine Seamount (JS, summit 170- 500 m w. d.) consists mainly of basalt which is only locally covered by limestones and bioclastic sands. 2. The bioclastic sands are almost free of terrigenous components, and are well sorted, unimodal medium sands. (1) "Recent pelagic sands" are typical of water depths > 600 m (JS) or > 1000 m (GMS). (2) "Sands of mixed relict-recent origin" (10-40% relict) and (3) "relict sands" (> 40% relict) are highly reworked, coarse lag deposits from the upper flanks and summit tops in which recent constituents are mixed with Pleistocene or older relict material. 3. From the carbonate rocks of both seamounts, 12 "microfacies" (MF-)types were distinguished. The 4 major types are: (1) Bio(pel)sparites (MF 1) occur on the summit plateaus and consist of magnesian calcite cementing small pellets and either redeposited planktonic bioclasts or mixed benthonic-planktonic skeletal debris ; (2) Porous biomicrites (MF 2) are typical of the marginal parts of the summit plateaus and contain mostly planktonic foraminifera (and pteropods), sometimes with redeposited bioclasts and/or coated grains; (3) Dense, ferruginous coralline-algal biomicrudites with Amphistegina sp. (MF 3.1), or with tuffaceous components (MF 3.2); (4) Dense, pelagic foraminiferal nannomicrite (MF 4) with scattered siderite rhombs. Corresponding to the proportion and mineralogical composition of the bioclasts and of the (Mgcalcitic) peloids, micrite, and cement, magnesian calcite (13-17 mol-% MgCO3) is much more abundant than low-Mg calcite and aragonite in rock types (1) and (2). Type (3) contains an "intermediate" Mg-calcite (7-9 mol-X), possibly due to an original Mg deficiency or to partial exsolution of Mg during diagenesis. The nannomicrite (4) consists of low-Mg calcite only. 4. Three textural types of volcanic and associated gyroclastic rocks were distinguished: (1) holohyaline, rapidly chilled and granulated lava flows and tuffs (palagonite tuff breccia and hyaloclastic top breccia); (2) tachylitic basalts (less rapidly chilled; with opaque glass); and (3) "slowly" crystallized, holocrystalline alkali olivine basalts. The carbonate in most mixed pyroclastic-carbonate sediments at the basalt contact is of "post-eruptive" origin (micritic crusts etc.); "pre-eruptive" limestone is recrystallized or altered at the basalt contact. A deuteric (?hydrothermal) "mineralX", filling vesicles in basalt and cementing pyroclastic breccias is described for the first time. 5. Origin and development of GMS andJS: From its origin, some 85 m. y. ago, the volcano of GMS remained active until about 10 m. y. B. P. with an average lava discharge of 320 km**3/m. y. The volcanic origin of JS is much younger (?Middle Tertiary), but the volcanic activity ended also about 9 m. y. ago. During L a t e Miocene to Pliocene times both volcanoes were eroded (wave-rounded cobbles). The oldest pyroclastics and carbonates (MF 3.1, 3.2) were originally deposited in shallow-water (?algal reef hardground). The Plio (-Pleisto) cene foraminiferal nannomicrites (MF 4) suggest a meso- to bathypelagic environment along the flanks of GMS. During the Quaternary (?Pleistocene) bioclastic sands were deposited in water depths beyond wave base on the summit tops, repeatedly reworked, and lithified into loosely consolidated biopelsparites and biomicrites (MF 1 and 2; Fig. 15). Intermediate steps were a first intragranular filling by micrite, reworking, oncoidal coating, weak consolidation with Mg-calcite cemented "peloids" in intergranular voids and local compaction of the peloids into cryptocrystalline micrite with interlocking Mg-calcite crystals up to 4p. The submarine lithification process was frequently interrupted by long intervals of nondeposition, dissolution, boring, and later infilling. The limestones were probably never subaerially exposed. Presently, the carbonate rocks undergo biogenic incrustation and partial dissolution into bioclastic sands. The irregular distribution pattern of the sands reflects (a) the patchy distribution of living benthonic organisms, (b) the steady rain of planktonic organism onto the seamount top, (c) the composition of disintegrating subrecent limestones, and (d) the intensity of winnowing and reworking bottom current
Resumo:
Sr contents in phosphorites on shelves of the Southwest Africa, and of Chile and Peru increase with degree of their lithification, from 0.05 to 0.28% and from 0.13 to 0.16% respectively. Phosphorites from Pacific submarine seamounts have the average Sr content 0.11%, and bone phosphate from Pacific floor 0.13%. Shelf phosphorites are characterized by high correlation coefficients between Sr and P2O5 (R = +0.82) and constant Sr/P2O5 ratio (0.0084). In phosphorites from submarine sea-mounts and in bones from the ocean floor Sr/P2O5 ratio is only a little higher than a half of that in shelf phosphorites. This indicates specific and different genesis of phosphorites from submarine mountains. Ba content in recent phosphorites from the shelf of the Southwest Africa changes with increasing degree of lithification. At first their Ba contents rise from 0.031 to 0.188%, then they diminish to 0.016%, and thereafter again increase to 0.070%. This is due to successive predominance of one of the following processes going in different directions: co-precipitation with phosphate gels or formation of true separate Ba phase, loss of phosphate in crystallization and "self-purification" of concentrations, and surface adsorption. In Peru-Chile shelf phosphorites the average Ba content is 0.017%, in phosphorites from Pacific seamounts 0.192%, and in fossilized bones 0.010%.
Resumo:
Occurrence of deep-sea dolomites has been reported from numerous settings (for discussion see Lumsden, 1988). Different authors agree that dolomite formation in the pelagic realm is a relatively early diagenetic process (e.g., Jorgensen, 1983; Shimmield and Price, 1984; Kablanow et al., 1984; Kulm et al., 1984). Baker and Burns (1985) suggest that most of the pelagic dolomites formed within a few tens of meters below the seafloor within the zone of microbial sulfate reduction. According to Fuechtbauer and Richter (1988), dolomite can form in the deep-sea at a minimum temperature of 10°C. Other deep-sea dolomites are products of fluids derived from underlying evaporites or submarine weathering of basalts (Garrison, 1981). In some cases (Mullins et al., 1985; Dix and Mullins, 1988; Mullins et al., 1988), the existence of dolomite is linked to disconformities and its formation may have resulted from circulation of seawater through the sediment during prolonged exposure (Dix and Mullins, 1988, p. 287). At Site 768 (Fig. 1), lithified carbonate layers, some containing variable amounts of dolomite, occur below 201 mbsf (Miocene). These beds alternate with unconsolidated or semi-lithified marl layers interbedded in clays and siliciclastic turbidites. The irregular depth distribution of the limestone beds and the variation in preservation and recrystallization of the calcareous microfaunas suggest that lithification of carbonates at Site 768 not only reflects burial diagenesis as described by Garrison (1981) and others, but in part may be a selective, early diagenetic process. The different types and distribution of the dolomite additionally seem to support this assumption. The purpose of this report is to document the occurrence and textural nature of the dolomite at Site 768. Methods used were analyses of stained thin sections (Alizarin S and Ferrocyanide) and studies with the scanning electron microscope. No geochemical analyses (e.g., stable isotopes) were carried out; they will be the subject of further investigations.
Resumo:
The Pliocene-Quaternary sediments that we drilled at eight sites in the Gulf of California consist of silty clays to clayey silts, diatomaceous oozes, and mixtures of both types. In this chapter I have summarized various measurements of their physical properties, relating this information to burial depth and effective overburden pressure. Rapid deposition and frequent intercalations of mud turbidites may cause underconsolidation in some cases; overconsolidation probably can be excluded. General lithification begins at depths between 200 and 300 meters sub-bottom, at porosities between 55 and 60% (for silty clays) and as high as 70% (for diatomaceous ooze). Diatom-rich sediments have low strength and very high porosities (70-90%) and can maintain this state to a depth of nearly 400 meters (where the overburden pressure = 1.4 MPa). The field compressibility curves of all sites are compared to data published earlier. Where sediments are affected by basaltic sills, these curves clearly show the effects of additional loading and thermal stress (diagenesis near the contacts). Strength measurements on well-preserved hydraulic piston cores yielded results similar to those obtained on selected samples from standard drilling. Volumetric shrinkage dropped to low values at 100 to 400 meters burial depth (0.3 to 2.0 MPa overburden pressure). Porosity after shrinkage depends on the composition of sediments.
Resumo:
Heavy-mineral analyses were made for 39 samples, 27 from DSDP Site 445 and 12 from Site 446. About one-fourth of the samples were so loose that they were easily disaggregated in water. The amount of heavy residue and the magnetite content of the heavy fraction were very high, 0.2 to 44 per cent and (on the average) more than 20 per cent, respectively. Among the non-opaque heavy minerals, common hornblende (0 to 80%) and augite (0 to 98%) are most abundant. Pale-green and bluish-green amphiboles (around 10%) and the epidote group (a few to 48%) are next in abundance. Euhedral apatite and biotite and irregularly shaped chromite are not abundant, but are present throughout the sequence. Hacksaw structure is developed in pale-green amphibole and augite. At Site 445, a fair amount of chlorite and a few glauconite(?) grains are present from Core 445-81 downward. The content of common hornblende and opaque minerals also changes from Core 445-81 downward. A geological boundary may exist between Cores 445-77 and 445-81. Source rocks of the sediments at both sites were basaltic volcanic rocks (possibly alkali suite), schists, and ultramafic rocks. The degree of lithification and amount of heavy residue, and the content of magnetite, non-opaque heavy minerals (excluding mafic minerals), and mafic minerals in the cores were compared with Eocene, Oligocene, and Miocene sandstones of southwest Japan. In many respects, the sediments at Sites 445 and 446 are quite different from those of southwest Japan. From the early Eocene to the early Miocene, the area of these sites belonged to a different geologic province than southwest Japan.
Resumo:
At subduction zones, the permeability of major fault zones influences pore pressure generation, controls fluid flow pathways and rates, and affects fault slip behavior and mechanical strength by mediating effective normal stress. Therefore, there is a need for detailed and systematic permeability measurements of natural materials from fault systems, particularly measurements that allow direct comparison between the permeability of sheared and unsheared samples from the same host rock or sediment. We conducted laboratory experiments to compare the permeability of sheared and uniaxially consolidated (unsheared) marine sediments sampled during IODP Expedition 316 and ODP Leg 190 to the Nankai Trough offshore Japan. These samples were retrieved from: (1) The décollement zone and incoming trench fill offshore Shikoku Island (the Muroto transect); (2) Slope sediments sampled offshore SW Honshu (the Kumano transect) ~ 25 km landward of the trench, including material overriden by a major out-of-sequence thrust fault, termed the "megasplay"; and (3) A region of diffuse thrust faulting near the toe of the accretionary prism along the Kumano transect. Our results show that shearing reduces fault-normal permeability by up to 1 order of magnitude, and this reduction is largest for shallow (< 500 mbsf) samples. Shearing-induced permeability reduction is smaller in samples from greater depth, where pre-existing fabric from compaction and lithification may be better developed. Our results indicate that localized shearing in fault zones should result in heterogeneous permeability in the uppermost few kilometers in accretionary prisms, which favors both the trapping of fluids beneath and within major faults, and the channeling of flow parallel to fault structure. These low permeabilities promote the development of elevated pore fluid pressures during accretion and underthrusting, and will also facilitate dynamic hydrologic processes within shear zones including dilatancy hardening and thermal pressurization.
Resumo:
Uranium and thorium contents, as well as their distribution patterns have been studied in biogenic phosphates from the Atlantic and Pacific Oceans. Differently lithified fish remains (bones, scales, teeth) and marine mammal bones (ribs, vertebras, earbones) collected from both reduced shelf sediments and oxidized pelagic ones have been analyzed. U content in the material varies from 0.7 to 700 ppm, and Th content - from <0.5 to 14 ppm. U/Th ratio varies from 0.16 to 400. Contents of both elements increase with lithification of biogenic phosphates. U concentration is more intense on shelves, whereas thorium concentration increases in pelagic areas. Partial positive correlation of U and Th with Fe and negative correlation of U with organic carbon are noted. The latter corresponds to higher lithification of biogenic phosphates. Calcium phosphate transformed from hydroxyapatite to fluorcarbonate-apatite is the main carrier of U, while transformed organic matter is a minor agent. Thorium is mainly bound with Fe.