30 resultados para Lines of transmission


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a "maximum-sized" ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a "minimum" model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a field campaign in the Austral spring 2012 the sedimentary architecture of a periglacial flood plain at the northeastern coast of Potter Peninsula (Area 5) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 14 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During a field campaign in the Austral spring 2012 the sedimentary architecture of a polar gravel-beach system at the southern coast of Potter Peninsula (Area 3) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 31 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-spit system at the northern coast of Potter Peninsula (Area 4) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 47 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the western coast of Potter Peninsula (Area 1) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 21 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During two field campaigns (Austral springs 2011 and 2012) the sedimentary architecture of a polar gravel-beach system at the southwestern coast of Potter Peninsula (Area 2) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 49 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thawing-induced cliff top retreat in permafrost landscapes is mainly due to thermo-erosion. Ground-ice-rich permafrost landscapes are specifically vulnerable to thermo-erosion and may show high degradation rates. Within the HGF Alliance Remote Sensing and the FP7 PAGE21 permafrost programs we investigated how SAR and optical remote sensing can contribute to the monitoring of erosion rates of ice-rich cliffs in Arctic Siberia (Lena Delta, Russia). We produced two different vector products: i) Intra-annual cliff top retreat based on TerraSAR-X (TSX) satellite data (2012-2014): High-temporal resolution time series of TSX satellite data allow the inter-annual and intra-annual monitoring of the upper cliff-line retreat also under bad weather conditions and continuous cloud coverage. This published SAR product contains the retreating upper cliff lines of a 1.5 km long part of eroding ice-rich coast of Kurungnakh Island in the central Lena Delta. The upper cliff line was mapped using a thresholding approach for images acquired in the years 2012, 2013 and 2014 for the months June (2013, 2014), July (2013, 2014), August (2012, 2013, 2014) and September (2013, 2014). The cliff top retreat vector product is called 'upper_cliff_TerraSAR-X'. While the 2014 cliff lines show a clear retreat of 2 to 3 m/month, the cliff top lines for 2012 and 2013 are not chronologically ordered. However, lines from the end of the season of a year are always close to the lines from the beginning of the next summer season, indicating low cliff retreat in winter. ii) 4-year cliff top retreat based on optical satellite data (2010-2014): Long-term cliff top retreat could be assessed with two high-spatial resolution optical satellite images (GeoEye-1, 2010-08-05 and Worldview-1, 2014-08-19). The cliff top retreat vector product is called 'upper_cliff_optical'. Results: The long-term cliff top retreat derived from optical satellite data are 35 m cliff retreat within 4 years. The higher-temporal resolution SAR data equivalently show long-term rates of 18 m within 2 years and nearly now degradation activities in winter but maximum erosion rates in summer months.The Intra-seasonal cliff top retreat lines from 2014 show a rate of 2 to 3 m per month.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microthermometric and isotopic analyses of fluid inclusions in primitive olivine gabbros, oxide gabbros, and evolved granitic material recovered from Ocean Drilling Program Hole 735B at the Southwest Indian Ridge provide new insights into the evolution of C-O-H-NaCl fluids in the plutonic foundation of the oceanic crust. The variably altered and deformed plutonic rocks span a crustal section of over 1500 m and record a remarkably complex magma-hydrothermal history. Magmatic fluids within this suite followed two chemically distinct paths during cooling through the subsolidus regime: the first path included formation of CO2+CH4+H2O+C fluids with up to 43 mole% CH4; the second path produced hypersaline brines that contain up to 50% NaCl equivalent salinities. Subsequent to devolatilization, respeciation of magmatic CO2, attendant graphite precipitation, and cooling from 800°C to 500°C promoted formation of CH4-enriched fluids. These fluids are characterized by average d13C(CH4) values of -27.1+/-4.3 per mil (N=45) with associated d13C(CO2) compositions ranging from -24.9 per mil to -1.9 per mil (N=39), and average dD values of exsolved vapor of -41+/-12 per mil (N=23). In pods, veins, and lenses of highly fractionated residual material, hypersaline brines formed during condensation and by direct exsolution in the absence of a conjugate vapor phase. Entrapped CO2+CH4+H2O-rich fluids within many oxide-bearing rocks and felsic zones are significantly depleted in 13C (with d13C(CO2) values down to about -25 per mil) and contain CO2 concentrations higher than those predicted by equilibrium devolatilization models. We hypothesize that lower effective pressures in high-temperature shear zones promoted infiltration of highly fractionated melts and compositionally evolved volatiles into focused zones of deformation, significantly weakening the rock strength. In felsic-rich zones, volatile build-up may have driven hydraulic fracturing of gabbroic wall rocks resulting in the formation of magmatic breccias. Comparison of isotopic compositions of fluids in plutonic rocks from 735B, the MARK area of the Mid-Atlantic Ridge, and the Mid-Cayman Rise indicate (1) that the carbon isotope composition of the lower oceanic crust may be far more heterogeneous than previously believed and (2) that carbon-bearing species in the oceanic crust and their distribution at depth are highly variable.