76 resultados para GROUP-SIZE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study combined data on fin whale Balaenoptera physalus, humpback whale Megaptera novaeangliae, minke whale B. acutorostrata, and sei whale B. borealis sightings from large-scale visual aerial and ship-based surveys (248 and 157 sightings, respectively) with synoptic acoustic sampling of krill Meganyctiphanes norvegica and Thysanoessa sp. abundance in September 2005 in West Greenland to examine the relationships between whales and their prey. Krill densities were obtained by converting relationships of volume backscattering strengths at multiple frequencies to a numerical density using an estimate of krill target strength. Krill data were vertically integrated in 25 m depth bins between 0 and 300 m to obtain water column biomass (g/m**2) and translated to density surfaces using ordinary kriging. Standard regression models (Generalized Additive Modeling, GAM, and Generalized Linear Modeling, GLM) were developed to identify important explanatory variables relating the presence, absence, and density of large whales to the physical and biological environment and different survey platforms. Large baleen whales were concentrated in 3 focal areas: (1) the northern edge of Lille Hellefiske bank between 65 and 67°N, (2) north of Paamiut at 63°N, and (3) in South Greenland between 60 and 61° N. There was a bimodal pattern of mean krill density between depths, with one peak between 50 and 75 m (mean 0.75 g/m**2, SD 2.74) and another between 225 and 275 m (mean 1.2 to 1.3 g/m**2, SD 23 to 19). Water column krill biomass was 3 times higher in South Greenland than at any other site along the coast. Total depth-integrated krill biomass was 1.3 x 10**9 (CV 0.11). Models indicated the most important parameter in predicting large baleen whale presence was integrated krill abundance, although this relationship was only significant for sightings obtained on the ship survey. This suggests that a high degree of spatio-temporal synchrony in observations is necessary for quantifying predator-prey relationships. Krill biomass was most predictive of whale presence at depths >150 m, suggesting a threshold depth below which it is energetically optimal for baleen whales to forage on krill in West Greenland.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neogene palynofloras of southern California have been all too infrequently studied. Previous investigations of Pacific Coast sediments have been largely restricted to Pacific Northwest locales. Some important studies include those by Gray (1964), Wolfe, Hopkins, and Leopold (1966), Wolfe and Leopold (1967), Hopkins (1968), Piel (1969, 1977), Ballog, Sparks, and Waloweek (1972), and Musich (1973). The only published study of southern California materials is that of Heusser (1978) on Holocene sediments of the Santa Barbara basin. Most of these studies are concerned with the microflora from a particular formation; thus they have limited stratigraphic value and in most cases involve nonmarine to marginal marine rocks where no planktonic zonation was available. Musich's (1973) study was the first attempt at tying pollen assemblages to a planktonic zonation over an extended stratigraphic interval (Miocene to Pleistocene).Its location in the southern California Borderland and the sedimentary sections sampled make Leg 63 extremely valuable in deciphering the palynologic history of the Pacific Coast Neogene. Site 467 was chosen for our initial detailed study, because the relatively slow sedimentation rate provides an almost complete Neogene sequence of mainly terrigenous sediments and reliable planktonic age control is available.The goals of this study were to: (1) establish a reference section of Neogene palynomorph assemblages; (2) develop biostratigraphic criteria for use in correlation with other localities; (3) correlate the palynologic assemblages with the planktonic zonations; and (4) study the paleoenvironmental history in the southern California Neogene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aerial surveys of narwhals (Monodon monoceros) were conducted in the Canadian High Arctic during the month of August from 2002 to 2004. The surveys covered the waters of Barrow Strait, Prince Regent Inlet, the Gulf of Boothia, Admiralty Inlet, Eclipse Sound, and the eastern coast of Baffin Island, using systematic sampling methods. Fiords were flown along a single transect down the middle. Near-surface population estimates increased by 1.9%-8.7% when corrected for perception bias. The estimates were further increased by a factor of approximately 3, to account for individuals not seen because they were diving when the survey plane flew over (availability bias). These corrections resulted in estimates of 27 656 (SE = 14 939) for the Prince Regent and Gulf of Boothia area, 20 225 (SE = 7285) for the Eclipse Sound area, and 10 073 (SE = 3123) for the East Baffin Island fiord area. The estimate for the Admiralty Inlet area was 5362 (SE = 2681) but is thought to be biased. Surveys could not be done in other known areas of occupation, such as the waters of the Cumberland Peninsula of East Baffin, and channels farther west of the areas surveyed (Peel Sound, Viscount Melville Sound, Smith Sound and Jones Sound, and other channels of the Canadian Arctic archipelago). Despite these probable biases and the incomplete coverage, results of these surveys show that the summering range of narwhals in the Canadian High Arctic is vast. If narwhals are philopatric to their summering areas, as they appear to be, the total population of that range could number more than 60 000 animals. The largest numbers are in the western portion of their summer range, around Somerset Island, and also in the Eclipse Sound area. However, these survey estimates have large variances due to narwhal aggregation in some parts of the surveyed areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is a paucity of information on abundance, densities, and habitat selection of narwhals Monodon monoceros in the offshore pack ice of Baffin Bay, West Greenland, despite the critical importance of winter foraging regions and considerable sea ice declines in the past decades. We conducted a double-platform visual aerial survey over a narwhal wintering ground to obtain pack ice densities and develop the first fully corrected abundance estimate using point conditional mark-recapture distance sampling. Continuous video recording and digital images taken along the trackline allowed for in situ quantification of winter narwhal habitat and for the estimation of fine-scale narwhal habitat selection and habitat-specific sighting probabilities. Abundance at the surface was estimated at 3484 (coefficient of variation [CV] = 0.46) including whales missed by observers. The fully corrected abundance of narwhals was 18 044 (CV = 0.46), or approximately one-quarter of the entire Baffin Bay population. The narwhal wintering ground surveyed (~9500 km**2) had 2.4 to 3.2% open water based on estimates from satellite imagery (NASA Moderate Resolution Imaging Spectroradiometer) and 1565 digital photographic images collected on the trackline. Thus, the ~18 000 narwhals had access to 233 km**2 of open water, resulting in an average density of ~77 narwhals/km**2 open water. Narwhal sighting probability near habitats with <10% or 10 to 50% open water was significantly higher than sighting probability in habitats with >50% open water, suggesting narwhals select optimal foraging areas in dense pack ice regardless of open water availability. This study provides the first quantitative ecological data on densities and habitat selection of narwhals in pack ice foraging regions that are rapidly being altered with climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution patterns of calcareous dinoflagellate cysts were studied in the classic Cretaceous Tertiary (K-T) boundary section of Stevns Klint, Denmark, focusing mainly on the response of the cyst association to an abrupt environmental catastrophe. A major part of the Fish Clay, which covers the K-T boundary at its base and is exposed in the investigated section, contains fallout produced by an asteroid impact. Calcareous dinoflagenate cysts are the best preserved remains of carbonate-producing phytoplankton in this layer. The potential of this group of microfossils for the analysis of survival strategies and extinction patterns has been underestimated. The cyst species of the investigated section can be grouped into four assemblages that represent victims, survivors, opportunists, and specially adapted forms. The victims (Pithonelloideae) were an extremely successful group throughout the Upper Cretaceous, but were restricted to the narrow outer shelf. This restriction minimized their spatial distribution, which generally should be large to facilitate escape from unfavorable conditions. Spatial restriction optimized the population decrease by mass mortality, disabling a successful recovery. In contrast, the survivors that became the dominating group in the Danian had a wide spatial range from the shelf environment to the oceanic realm. A unique calcareous dinocyst assemblage in the Fish Clay shows that even under the stressed conditions immediately following the impact event, some species flourished due to special adaptation or high ecological tolerance. The ability of these dinoflagellate species to form calcareous resting cysts in combination with their generally wide spatial distribution in a variety of environments appears to be the main reason for a low extinction rate at the K-T boundary as opposed to the high extinction rate of other phytoplankton groups, such as the coccolithophorids.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To date, the only Southern Hemisphere eolian grain-size record constructed for the early Paleogene comes from Deep Sea Drilling Project Site 215. Ten early Paleogene sediment samples from Site 215 were collected and processed to show that the existing eolian grain-size record at this site can be reproduced. Five samples each from Ocean Drilling Program Sites 1263 and 1267 were similarly examined to test the possibility of generating new Southern Hemisphere eolian grain-size records for the early Paleogene. Our results indicate that an eolian grain-size signal can be constructed at Walvis Ridge, although the record will be complicated by hemipelagic terrigenous inputs. Further, we assert that a record generated at a site located on the deep flanks of Walvis Ridge is particularly susceptible to hemipelagic influence.