97 resultados para CLIMATE OSCILLATIONS


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A late Quaternary pollen record from northern Sakhalin Island (51.34°N, 142.14°E, 15 m a.s.l.) spanning the last 43.7 ka was used to reconstruct regional climate dynamics and vegetation distribution by using the modern analogue technique (MAT). The long-term trends of the reconstructed mean annual temperature (TANN) and precipitation (PANN), and total tree cover are generally in line with key palaeoclimate records from the North Atlantic region and the Asian monsoon domain. TANN largely follows the fluctuations in solar summer insolation at 55°N. During Marine Isotope Stage (MIS) 3, TANN and PANN were on average 0.2 °C and 700 mm, respectively, thus very similar to late Holocene/modern conditions. Full glacial climate deterioration (TANN = -3.3 °C, PANN = 550 mm) was relatively weak as suggested by the MAT-inferred average climate parameters and tree cover densities. However, error ranges of the climate reconstructions during this interval are relatively large and the last glacial environments in northern Sakhalin could be much colder and drier than suggested by the weighted average values. An anti-phase relationship between mean temperature of the coldest (MTCO) and warmest (MTWA) month is documented during the last glacial period, i.e. MIS 2 and 3, suggesting more continental climate due to sea levels that were lower than present. Warmest and wettest climate conditions have prevailed since the end of the last glaciation with an optimum (TANN = 1.5 °C, PANN = 800 mm) in the middle Holocene interval (ca 8.7-5.2 cal. ka BP). This lags behind the solar insolation peak during the early Holocene. We propose that this is due to continuous Holocene sea level transgression and regional influence of the Tsushima Warm Current, which reached maximum intensity during the middle Holocene. Several short-term climate oscillations are suggested by our reconstruction results and correspond to Northern Hemisphere Heinrich and Dansgaard-Oeschger events, the Bølling-Allerød and the Younger Dryas. The most prominent fluctuation is registered during Heinrich 4 event, which is marked by noticeably colder and drier conditions and the spread of herbaceous taxa.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Past changes in North Pacific sea surface temperatures and sea-ice conditions are proposed to play a crucial role in deglacial climate development and ocean circulation but are less well known than from the North Atlantic. Here, we present new alkenone-based sea surface temperature records from the subarctic northwest Pacific and its marginal seas (Bering Sea and Sea of Okhotsk) for the time interval of the last 15 kyr, indicating millennial-scale sea surface temperature fluctuations similar to short-term deglacial climate oscillations known from Greenland ice-core records. Past changes in sea-ice distribution are derived from relative percentage of specific diatom groups and qualitative assessment of the IP25 biomarker related to sea-ice diatoms. The deglacial variability in sea-ice extent matches the sea surface temperature fluctuations. These fluctuations suggest a linkage to deglacial variations in Atlantic meridional overturning circulation and a close atmospheric coupling between the North Pacific and North Atlantic. During the Holocene the subarctic North Pacific is marked by complex sea surface temperature trends, which do not support the hypothesis of a Holocene seesaw in temperature development between the North Atlantic and the North Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multiproxy paleoenvironmental records (pollen and planktonic isotope) from Ocean Drilling Program Site 976 (Alboran Sea) document rapid ocean and climate variations during the last glacial that follow the Dansgaard-Oeschger climate oscillations seen in the Greenland ice core records, thus suggesting a close link of the Mediterranean climate swings with North Atlantic climates. Continental conditions rapidly oscillated through cold-arid and warm-wet conditions in the course of stadial-interstadial climate jumps. At the time of Heinrich events, i.e., maximum meltwater flux to the North Atlantic, western Mediterranean marine microflora and microfauna show rapid cooling correlated with increasing continental dryness. Enhanced aridity conceivably points to prolonged wintertime stability of atmospheric high-pressure systems over the southwestern Mediterranean in conjunction with cooling of the North Atlantic.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Large-amplitude millennial-scale climate oscillations have been identified in late Pleistocene climate archives from around the world. These oscillations appear to be of larger amplitude during times of enlarged ice sheets. This observation suggests the existence of a relationship between large-amplitude millennial variations in climate and extreme glacial conditions and therefore that the emergence of millennial-scale climate variability may be linked to the Pliocene intensification of northern hemisphere glaciation (iNHG). Here we test this hypothesis using new late Pliocene high-resolution (ab. 400 year) records of ice-rafted debris deposition and stable isotopes in planktic foraminiferal calcite (Globigerinoides ruber) generated from Integrated Ocean Drilling Program Site U1313 in the subpolar North Atlantic (a reoccupation of the classic Deep Sea Drilling Project Site 607). Our records span marine oxygen isotope stages (MIS) 103-95 (ab. 2600 to 2400 ka), the first interval during iNHG (ab. 3.5 to 2.5 Ma) in which large-amplitude glacial-interglacial cycles and inferred sea level changes occur. Our records reveal small-amplitude variability at periodicities of ab. 1.8 to 6.2 kyr that prevails regardless of (inter)glacial state with no significant amplification during the glacials MIS 100, 98, and 96. These findings imply that the threshold for the amplification of such variability to the proportions seen in the marine archive of the last glacial was not crossed during the late Pliocene and, in view of all available data, likely not until the Mid-Pleistocene Transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Salinity increase in the subtropical gyre system may have pre-conditioned the North Atlantic Ocean for a rapid return to stronger overturning circulation and high-latitude warming following meltwater events during the Last Glacial period. Here we investigate the Gulf Stream - subtropical gyre system properties over Dansgaard-Oeschger (DO) cycles 14 to 12, including Heinrich ice-rafting event 5. During the Holocene and Last Glacial Maximum a positive gradient in surface dwelling planktonic foraminifera d18O (Globigerinoides ruber) can be observed between the Gulf Stream and subtropical gyre, due to decreasing temperature, increasing salinity, and a change from summer to year-round occurrence of G. ruber. We assess whether this gradient was a common feature during stadial-interstadial climate oscillations of Marine Isotope Stage 3, by comparing existing G. ruber d18O from ODP Site 1060 (subtropical gyre location) and new data from ODP Site 1056 (Gulf Stream location) between 54 and 46 ka. Our results suggest that this gradient was largely absent during the period studied. During the major warm DO interstadials 14 and 12 we infer a more zonal and wider Gulf Stream, influencing both ODP Sites 1056 and 1060. A Gulf Stream presence during these major interstadials is also suggested by the large vertical d18O gradient between shallow dwelling planktonic foraminifera species, especially G. ruber, and the deep dwelling species Globorotalia inflata at site 1056, which we associate with strong summer stratification and Gulf Stream presence. A major reduction in this vertical d18O gradient from 51 ka until the end of Heinrich event 5 at 48.5 ka suggests site 1056 was situated within the subtropical gyre in this mainly cold period, from which we infer a migration of the Gulf Stream to a position nearer to the continental shelf, indicative of a narrower Gulf Stream with possibly reduced transport.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we present a high-resolution faunal, floral and geochemical (stable isotopes and trace elements) record from the sediments of Ocean Drilling Program Site 963 (central Mediterranean basin), which shows centennial/millennial-scale resemblance to the high-northern latitude rapid temperature fluctuations documented in the Greenland ice cores between 20 and 70 kyr BP. Oxygen and carbon isotopes, planktic foraminifera and calcareous nannofossil distributions suggest that Dansgaard-Oeschger (D/O) and Heinrich events (HE) are distinctly expressed in the Mediterranean climate record. Moreover, recurrent though subdued oscillations not previously identified in the Lateglacial Mediterranean sediments document a significant centennial-scale climate variability in the basin that is greater than previously thought. Alternations between climate regimes dominated by polar outbreaks during D/O stadials and warm D/O interstadials, with associated intensification of continental runoff, are well expressed in the ODP Site 963. These place the Mediterranean basin as an often overlooked recorder of the interplay between large- and regional- scale climate controls at intermediate latitudes, and of the possible interactions between different components of the climate system. Significant changes in Ba/Ca values measured in Globigerinoides ruber shells from a number of D/O stadials and interstadials suggest enhanced freshwater input from the north-eastern Mediterranean borderland during the D/O interstadials. However, the short duration of 3D stratification events never led to complete oxygen consumption along the water column, but clear effects of sluggish 3D circulation in the basin are testified to by negative excursions in d13C measured in selected species of planktic and benthic foraminifera. HEs are constantly associated with lightening in the d18O record of planktic foraminifera, possibly because of the impact of iceberg melting in the Iberian Margin on Mediterranean thermohaline circulation. Interestingly, in two cases in particular, HE2 and HE5, fresher water inputs also affected deeper horizons of intermediate waters, suggesting a basin-wide impact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages from Santa Barbara Basin exhibit major faunal and ecological switches associated with late Quaternary millennial- to decadal-scale global climate oscillations. Repeated turnovers of entire faunas occurred rapidly (<40-400 yr) without extinction or speciation in conjunction with Dansgaard-Oeschger shifts in thermohaline circulation, ventilation, and climate, confirming evolutionary model predictions of Roy et al. Consistent faunal successions of dysoxic taxa during successive interstadials reflect the extreme sensitivity and adaptation of the benthic ecosystem to the rapid environmental changes that marked the late Quaternary and possibly other transitional intervals in the history of the Earth's ocean-atmosphere-cryosphere system. These data support the hypothesis that broad segments of the biosphere are well adapted to rapid climate change.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-decadal to centennial planktic d18O and Mg/Ca records were generated at ODP976 in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Bolling/Allerod (B/A) warming and Younger Dryas (YD) cooling. During T2 the H11 d18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka BP. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1 we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Antarctic Peninsula region is ideally suited to monitor how global change affects Antarctica because it is one of the most sensitive regions of the continent to rapid climate change. This has been clearly demonstrated by the recent break up of the Larsen A Ice Shelf. Drilling at Ocean Drilling Program Site 1098, Palmer Deep, western Antarctic Peninsula, recovered almost 50 m of sediments that record the paleoceanographic and paleoclimatic history of the region from the last glacial maximum through the rapid climate oscillations of deglaciation into the Holocene. This sedimentary section will provide a wealth of high-resolution paleoenvironmental data from Antarctica that will be useful for climate modelers and paleoceanographers alike. This data report presents the preliminary results of a high-resolution, microscale sediment fabric study of the postglacial sediments from Palmer Deep Site 1098. These sediments have previously been described as being annually laminated; however, this investigation shows that although the interpretation of this sequence as seasonal sediments is most likely correct, there are a number of features that indicate there is strong interannual variability affecting the laminations.