59 resultados para C(4) photosynthesis
Resumo:
The diabases cut across the ophiolites as parallel and variably thick dyke-swarms. Geochemistry of the diabases reveals three distinct groups, including a) supra-subduction zone (SSZ) type, which is characterized by marked Nb-anomaly and normal mid-ocean ridge basalt (N-MORB) like HFSE distribution, b) enriched MORB (E-MORB) type, showing some degree of enrichment relative to N-MORB, c) oceanic-island basalt (OIB) type with characteristic hump-backed trace element patterns, coupled with fractionated REE distribution.
Resumo:
A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.
Resumo:
Over 100 samples of recent surface sediments from the bottomn of the Atlantic Ocean offshore NW Africa between 34° and 6° N have been analysed palynologically. The objective of this study was to reveal the relation between source areas, transport systems, and resulting distribution patterns of pollen and spores in marine sediments off NW Africa, in order to lay a sound foundation for the interpretation of pollen records of marine cores from this area. The clear zonation of the NW-African vegetation (due to the distinct climatic gradient) is helpful in determining main source areas, and the presence of some major wind belts facilitates the registration of the average course of wind trajectories. The present circulation pattern is driven by the intertropical front (ITCZ) which shifts over the continent between c. 22° N (summer position) and c. 4° N (winter position) in the course of the year. Determination of the period of main pollen release and the average atmospheric circulation pattern effective at that time of the years is of prime importance. The distribution patterns in recent marine sediments of pollen of a series of genera and families appear to record climatological/ecological variables, such as the trajectory of the NE trade, January trades, African Easterly Jet (Saharan Air Layer), the northernmost and southernmost position of the intertropical convergence zone, and the extent and latitudinal situation of the NW-African vegetation belt. Pollen analysis of a series of dated deep-sea cores taken between c. 35° and the equator off NW African enable the construction of paleo-distribution maps for time slices of the past, forming a register of paleoclimatological/paleoecological information.
Resumo:
The SESRU_02_mesozooplankton dataset contains data collected in September 2008 at 15 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180 µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. The entire sample or an aliquot (1/2 to ¼) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950 and Internet resources).
Resumo:
A substantial extinction of megafauna occurred in Australia between 50 and 45 kyr ago, a period that coincides with human colonization of Australia. Large shifts in vegetation also occurred around this time, but it is unclear whether the vegetation changes were driven by the human use of fire-and thus contributed to the extinction event-or were a consequence of the loss of megafaunal grazers. Here we reconstruct past vegetation changes in southeastern Australia using the stable carbon isotopic composition of higher plant wax n-alkanes and levels of biomass burning from the accumulation rates of the biomarker levoglucosan from a well-dated sediment core offshore from the Murray-Darling Basin. We find that from 58 to 44 kyr ago, the abundance of plants with the C-4 carbon fixation pathway was generally high-between 60 and 70%. By 43 kyr ago, the abundance of C-4 plants dropped to 30% and biomass burning increased. This transient shift lasted for about 3,000 years and came after the period of human arrival and directly followed megafauna extinction at 48.9-43.6 kyr ago. We conclude that the vegetation shift was not the cause of the megafaunal extinction in this region. Instead, our data are consistent with the hypothesis that vegetation change was the consequence of the extinction of large browsers and led to the build-up of fire-prone vegetation in the Australian landscape.
Resumo:
The SESRU01_mesozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net (mesh size 180 ?m, mouth area 0.1 m**2). Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample or an aliquot (1/2 to1/4) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950, and Internet resources).
Resumo:
Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.
Resumo:
Approaches to quantify the organic carbon accumulation on a global scale generally do not consider the small-scale variability of sedimentary and oceanographic boundary conditions along continental margins. In this study, we present a new approach to regionalize the total organic carbon (TOC) content in surface sediments (<5 cm sediment depth). It is based on a compilation of more than 5500 single measurements from various sources. Global TOC distribution was determined by the application of a combined qualitative and quantitative-geostatistical method. Overall, 33 benthic TOC-based provinces were defined and used to process the global distribution pattern of the TOC content in surface sediments in a 1°x1° grid resolution. Regional dependencies of data points within each single province are expressed by modeled semi-variograms. Measured and estimated TOC values show good correlation, emphasizing the reasonable applicability of the method. The accumulation of organic carbon in marine surface sediments is a key parameter in the control of mineralization processes and the material exchange between the sediment and the ocean water. Our approach will help to improve global budgets of nutrient and carbon cycles.
Resumo:
Seagrass meadows are important marine carbon sinks, yet they are threatened and declining worldwide. Seagrass management and conservation requires adequate understanding of the physical and biological factors determining carbon content in seagrass sediments. Here, we identified key factors that influence carbon content in seagrass meadows across several environmental gradients in Moreton Bay, SE Queensland. Sampling was conducted in two regions: (1) Canopy Complexity, 98 sites on the Eastern Banks, where seagrass canopy structure and species composition varied while turbidity was consistently low; and (2) Turbidity Gradient, 11 locations across the entire bay, where turbidity varied among sampling locations. Sediment organic carbon content and seagrass structural complexity (shoot density, leaf area, and species specific characteristics) were measured from shallow sediment and seagrass biomass cores at each location, respectively. Environmental data were obtained from empirical measurements (water quality) and models (wave height). The key factors influencing carbon content in seagrass sediments were seagrass structural complexity, turbidity, water depth, and wave height. In the Canopy Complexity region, carbon content was higher for shallower sites and those with higher seagrass structural complexity. When turbidity varied along the Turbidity Gradient, carbon content was higher at sites with high turbidity. In both regions carbon content was consistently higher in sheltered areas with lower wave height. Seagrass canopy structure, water depth, turbidity, and hydrodynamic setting of seagrass meadows should therefore be considered in conservation and management strategies that aim to maximize sediment carbon content.
Resumo:
Recent research has increasingly advocated a role for the North Pacific Ocean in modulating global climatic changes over both the last glacial cycle and further back into the geological record. Here a diatom d18O record is presented from Ocean Drilling Program Site 882 over the Pliocene/Quaternary boundary from 2.73 Ma to 2.52 Ma (MIS G6-MIS 99). Large changes in d18Odiatom of c. 4 per mil from 2.73 Ma onwards are documented to occur on a timeframe broadly coinciding with glacial-interglacial cycles. These changes are primarily attributed to large scale inputs of meltwater from glacials surrounding the North Pacific Basin and the Bering Sea. Despite these inputs and associated change in surface water salinity, on the basis of existing opal and UK37 temperature data and new modelled water column densities, no evidence exists to suggests a removal of the halocline stratification or a resumption of the high productivity system similar to that which prevailed prior to 2.73 Ma. The permanence of the halocline suggests that the region played a key role in driving global climatic changes over the early glacial-interglacial cycles that followed the onset of major Northern Hemisphere Glaciation by inhibiting deep water upwelling and ventilation of CO2 to the atmosphere.