929 resultados para Anguis fragilis
Resumo:
The world's oceans are slowly becoming more acidic. In the last 150 yr, the pH of the oceans has dropped by ~0.1 units, which is equivalent to a 25% increase in acidity. Modelling predicts the pH of the oceans to fall by 0.2 to 0.4 units by the year 2100. These changes will have significant effects on marine organisms, especially those with calcareous skeletons such as echinoderms. Little is known about the possible long-term impact of predicted pH changes on marine invertebrate larval development. Here we predict the consequences of increased CO2 (corresponding to pH drops of 0.2 and 0.4 units) on the larval development of the brittlestar Ophiothrix fragilis, which is a keystone species occurring in high densities and stable populations throughout the shelf seas of northwestern Europe (eastern Atlantic). Acidification by 0.2 units induced 100% larval mortality within 8 d while control larvae showed 70% survival over the same period. Exposure to low pH also resulted in a temporal decrease in larval size as well as abnormal development and skeletogenesis (abnormalities, asymmetry, altered skeletal proportions). If oceans continue to acidify as expected, ecosystems of the Atlantic dominated by this keystone species will be seriously threatened with major changes in many key benthic and pelagic ecosystems. Thus, it may be useful to monitor O. fragilis populations and initiate conservation if needed.
Resumo:
The Upper Pleistocene sediments of the Aschenhütte sink-hole (west of Herzberg am Harz, Lower Saxony) enable one to make interesting correlations between palynological and geological results. The sequence is composed of limnic-telmatic deposits (Eemain to Lower Weichselian) and loess with paleosoils (Weichselian). Sedimentation started during the hornbeam-dominated phase of the Eemian interglacial period and continued throughout the Eemian, the Weichselian Brörup interstadial (sensu Andersen) and parts of the preceding and the following stadial phases, the Herning and the Rederstall stadials. As opposed to most of the known Eemian sites spruce was a major tree species during the hornbeam-dominated phase of the Eemian. The vegetational development during the interstadial phase does not show a period of climatic deterioration as is the case for the Brörup interstadial when considering regions with a more demanding vegetation or regions close to the natural boundaries of the tree species concerned. Pollen or seeds of Bruckenthalia and Picea omoricoides have not been found in the Aschenhütte cores. The limnic-telmatic sediments interlock with loess-paleosoils (Eemian soil and Lower Weichselian bleaching soils) at the lake shore. They are overlaid by loess paleosoils of the Stillfried-B interstadial (Hattorf soil and Lohne soil). Lake level fluctuations were determined by means of the facies distribution and isochrones as defined by pollen analysis. A relatively high stand of the lake level existed after the end of the Eemian interglacial and during the Brörup interstadial periods. In the course of the Herning stadial period the water level dropped, whereas during the Rederstall stadial phase the lake basin was covered by sediments and therefore dried up.
Resumo:
Significant synchronous shifts in the chemistry, mineralogy, grain sizes and color of the sediments at 6 m below sea floor (mbsf) at ODP Site 1195 on the Marion Plateau (NE Australia) are interpreted to reflect a major regional paleoceanographic change: the initiation of the southern province of the Great Barrier Reef (GBR). The onset of this massive carbonate production centre nearby resulted primarily in increased deposition of carbonate-rich sediments of neritic origin. Both sedimentation rate and terrigenous input record a coincident decline attributed to inshore trapping of materials behind the reefs. Our best estimate places the development of reef framework in the southern part of the GBR between 560 and 670 kyr B.P., based on an age model combining magnetostratigraphic and biostratigraphic data. The proposed estimation agrees with previous studies reporting an age between 500 and 930 kyr B.P., constraining more tightly their results. However, it does not support research placing the birth of the GBR in Marine Isotope Stage (MIS) 11 (~400 kyr), nor the theory of a worldwide modern barrier reef development at that time.
Resumo:
Composition and distribution of megabenthic communities around Svalbard were investigated in June/July 1991 with 20 Agassiz trawl and 5 bottom trawl hauls in depths between 100 and 2100 m. About 370 species, ranging from sponges to fish, were identified in the catches. Species numbers per station ranged from 21 to 86. Brittle stars, such as Ophiacantha bidentata, Ophiura sarsi and Ophiocten sericeum, were most important in terms of constancy and relative abundance in the catches. Other prominent faunal elements were eunephthyid alcyonarians, bivalves, shrimps, sea stars and fish (Gadidae, Zoarcidae, Cottidae). Multivariate analyses of the species and environmental data sets showed that the spatial distribution of the megabenthos was characterized by a pronounced depth zonation: abyssal, bathyal, off-shore shelf and fjordic communities were discriminated. However, a gradient in sediment properties, especially the organic carbon content, seemed to superimpose on the bathymetric pattern. Both main factors are interpreted as proxies of the average food availability, which is, hence, suggested to have the strongest influence in structuring megabenthic communities off Svalbard.
Resumo:
Sediments from the western and southern part of the Arabian Sea were collected periodically in the spring intermonsoon between March and May 1997 and additionally at the end of the Northeast Monsoon in February 1998. Assemblages of Rose Bengal stained, living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity were analysed after the Northeast Monsoon and short-time changes were recorded. In the western Arabian Sea, foraminiferal numbers increased steadily between March and the beginning of May, especially in the smaller size classes (30-63 µm, 63-125 µm). At the same time, the deepening of the foraminiferal living horizon, variable diversity and rapid variations between dominant foraminiferal communities were observed. We interpret these observations as the time-dependent response of benthic foraminifera to enhanced organic carbon fluxes during and after the Northeast Monsoon. In the southern Arabian Sea, constant low foraminiferal abundances during time, no distinctive change in the vertical distribution, reduced diversity, and more stable foraminiferal communities were noticed, which indicates no or little influence of the Northeast Monsoon to benthic foraminifera in this region.
Resumo:
Five holes were drilled at two sites in the Sea of Japan during Ocean Drilling Program (ODP) Leg 128. Site 798 is located on Oki Ridge at a depth of about 900 m. Sediment age at Site 798 ranges from Pliocene to Holocene. Site 799 is located in the Kita-Yamato Trough at depth of 2000 m and below the present calcite compensation depth (CCD); the sediment ranges from Miocene to Holocene in age. Samples from all holes contain benthic foraminifers. Faunal evidence of downslope displacement is frequent in Holes 799A and 799B. The vertical frequency distribution of some dominant species shows that significant faunal changes occur in Holes 798A-C on Oki Ridge. Based on the faunal change and the thickness of sediments, it appears that the Oki Ridge was uplifted more than 1,000 m during last 4 m.y. Benthic foraminifers also demonstrate that the water depth of Site 799 rapidly changed from upper bathyal to lower bathyal during middle Miocene time. The appearance of benthic foraminifer species common to anaerobic environments suggests that the dysaerobic to anaerobic bottom conditions existed during the evolution of the Sea of Japan. Faunal distributions also suggest that the 'Tertiary-type' species recognized in the Neogene strata of the Japan Sea coastal regions disappeared sequentially from the Sea of Japan during Pliocene to late Pleistocene.
Resumo:
The discovery of a neolithic pile field in the shallow water near the eastern shore of the Degersee confirmed earlier palynological and sedimentological studies stating that early man was active in the region since more than 6000 years. The already available off-site data were freshly assessed, completed by additional data from old and new cores and the interpretations revised. A common time scale for the off-site data and the on-site data was obtained by AMS dating of terrestrial macro remains of the neolithic section of off-site core De_I+De_H. The ages can thus be parallelled with AMS ages of construction timber on-site. Pollen analyses from all cores provide a further time scale. The continuously and densely sampled pollen profile of the profundal zone embracing the entire Late glacial and Holocene serves as a reference. From the Boreal onwards the relative ages are transformed by AMS ages and varve counts into calibrated and absolute. A transect cored close to the neolithic pile field across the lake marl-platform demonstrates its geological architecture in the shallow water since the Lateglacial. Studies of the microfabric of thin sections of drilled cores and of box cores from the excavations demonstrate that neolithic settlements now at 2-3,5 m water depth had been erected on lake marl freshly fallen dry, thus indicating earlier lake levels dropped by 1.5-2 m. The neolithic section of the highly resolved off-site profile in the lake=s profundal zone has laminated and calcareous zones alternating with massive ones. Assemblages of diatoms and concentrations of trace elements changing simultaneously characterise the calcareous sections as deposits of low lake levels that lasted between some 40 and more than 300 years. The ages of discovered lake shore dwellings fall into calcareous segments with low lake levels. From the end of the Upper Atlantic period (F VII) appear Secondary Forest Cycles in the beech forest, a man-made sequence of repeated vegetational development with an identical pattern: With a decrease of beech pollen appear pollen of grasses, herbs and cultural indicators. These are suppressed by the light demanding hazel and birch, those again by ash, and finally by the shade demanding beech forming a new pollen peak. Seven main Forest Cycles are identified In the upper Neolithic period each comprising some 250, 450 or 800 years. They are subdivided into subcycles that can be broken down by very dense sampling in even shorter cycles of decadal length. Farming settlers have caused minor patchy clearances of the beech-mixed-forest with the use of fire. The phases of clearance coincide with peaks of charcoal and low stands of the lake levels. The Secondary Forest Cycles and the continuous occurrence of charcoal prove a continued occupation of the region. Together with the repeated restoration of the beech climax forest they point to pulsating occupation probably associated with dynamic demography. The synchronism of the many palynological, sedimentological and archaeological data point to an external forcing as the climate that affects comprehensively all these proxies. The fluctuations of the activity of the sun as manifested in the residual d14C go largely along with the proxies. The initial clearances at the begin of the forest cycles are linked to low lake levels and negative values of d14C that point to dry and warm phases of a more continental climate type. The subcycles exist independent from climatic changes, indicating that early man acted largely independent from external forces.
Resumo:
In summary, one may conclude that human influence in the Bokanjac area started in the Eneolithic or Earlier Bronze Age - the third to second millennia Cal. BC. Traces of agriculture are weak or missing in the pollen diagram but grazing is indicated. Chestnut and walnut were introduced by humans to the area in classical times. These findings are in general agreement with the results of earlier studies at coastal sites north-west and south-east of Bokanjacko Blato.
Resumo:
Detailed analyses of the Lake Van pollen, Ca/K ratio and stable oxygen isotope record allow the identification of millennial-scale vegetation and environmental changes in eastern Anatolia throughout the last glacial (~75-15 ka BP). The climate within the last glacial was cold and dry, with low arboreal pollen (AP) levels. The driest and coldest period corresponds to Marine Isotope Stage (MIS) 2 (~28-14.5 ka BP) dominated by the highest values of xerophytic steppe vegetation. Our high-resolution multi proxy record shows rapid expansions and contractions of tree populations that reflects variability in temperature and moisture availability. This rapid vegetation and environmental changes can be linked to the stadial-interstadial pattern of the Dansgaard-Oeschger (DO) events as recorded in the Greenland ice cores. Periods of reduced moisture availability were characterized by enhanced xerophytic species and high terrigenous input from the Lake Van catchment area. Furthermore, comparison with the marine realm reveals that the complex atmosphere-ocean interaction can be explained by the strength and position of the westerlies, which is responsible for the supply of humidity in eastern Anatolia. Influenced by diverse topography of the Lake Van catchment, larger DO interstadials (e.g. DO 19, 17-16, 14, 12 and 8) show the highest expansion of temperate species within the last glacial. However, Heinrich events (HE), characterized by highest concentrations of ice-rafted debris (IRD) in marine sediments, are identified in eastern Anatolia by AP values not lower and high steppe components not more abundant than during DO stadials. In addition, this work is a first attempt to establish a continuous microscopic charcoal record over the last glacial in the Near East, which documents an initial immediate response to millennial-scale climate and environmental variability and enables us to shed light on the history of fire activity during the last glacial.
Resumo:
In this study a radiocarbon-dated pollen record from Lake Billyakh (65°17'N, 126°47'E; 340 m a.s.l.) in the Verkhoyansk Mountains was used to reconstruct vegetation and climate change since about 15 kyr BP (1 kyr=1000 cal. yr). The pollen record and pollen-based biome reconstruction suggest that open cool steppe and grass and sedge tundra communities with Poaceae, Cyperaceae, Artemisia, Chenopodiaceae, Caryophyllaceae and Selaginella rupestris dominated the area from 15 to 13.5 kyr BP. On the other hand, the constant presence of Larix pollen in quantities comparable to today's values points to the constant presence of boreal deciduous conifer trees in the regional vegetation during the last glaciation. A major spread of shrub tundra communities, including birch (Betula sect. Nanae), alder (Duschekia fruticosa) and willow (Salix) species, is dated to 13.5-12.7 kyr BP, indicating a noticeable increase in precipitation toward the end of the last glaciation, particularly during the Allerød Interstadial. Between 12.7 and 11.4 kyr BP pollen percentages of herbaceous taxa rapidly increased, whereas shrub taxa percentages decreased, suggesting strengthening of the steppe communities associated with the relatively cold and dry Younger Dryas Stadial. However, the pollen data in hand indicate that Younger Dryas climate was less severe than the climate during the earlier interval from 15 to 13.5 kyr BP. The onset of the Holocene is marked in the pollen record by the highest values of shrub and lowest values of herbaceous taxa, suggesting a return of warmer and wetter conditions after 11.4 kyr BP. Percentages of tree taxa increase gradually and reach maximum values after 7 kyr BP, reflecting the spread of boreal cold deciduous and taiga forests in the region. An interval between 7 and 2 kyr BP is noticeable for the highest percentages of Scots spine (Pinus subgen. Diploxylon), spruce (Picea) and fir (Abies) pollen, indicating mid-Holocene spread of boreal forest communities in response to climate amelioration and degradation of the permafrost layer.
Resumo:
Recent nannoplankton from the "Meteor"-stations M 242, M 243 and M 245 in the northern Arabian Sea were studied by means of the light and electron microscope, and 19 species were found. The nannoplankton assemblage of the northern Arabian Sea is compared with those of the eastern and western Mediterranean Sea and the Atlantic Ocean. Gephyrocapsa oceanica (Kamptner), Cyclococcolithus leptoporus (Murray & Blackman), Emiliania huxleyi (Lohmann), Helicopontospbaera kamptneri (Hay & Mohler), and Umbilicosphaera mirabilis (Lohmann) are the most common species in the northern Arabian Sea. Reworked nannoplankton and nannoplankton species agglutinated by tintinnids are discussed.
Resumo:
Assemblages of living deep-sea benthic foraminifera, their densities, vertical distribution pattern, and diversity, were investigated in the intermonsoon period after the northeast monsoon in the Arabian Sea in spring 1997. Foraminiferal numbers show a distinct gradient from north to south, with a maximum of 623 foraminifera in 50 cm**3 at the northern site. High percentages of small foraminifera were found in the western and northern part of the Arabian Sea. Most stations show a typical vertical distribution with a maximum in the first centimeter and decreasing numbers with increasing sediment depths. But at the central station, high densities can be found even in deeper sediment layers. Diversity is very high at the northern and western sites, but reduced at the central and southern stations. Data and faunal assemblages were compared with studies carried out in 1995. A principal component analysis of intermonsoon assemblages shows that the living benthic foraminifera can be characterized by five principal component communities. Dominant communities influencing each site differ strongly between the two years. In spring 1997, stations in the north, west and central Arabian Sea were dominated by opportunistic species, indicating the influence of fresh sedimentation pulses or enhanced organic carbon fluxes after the northeast monsoon.