271 resultados para Amphiura filiformis
Resumo:
Rising levels of atmospheric carbon dioxide and the concomitant increased uptake of this by the oceans is resulting in hypercapnia-related reduction of ocean pH. Research focussed on the direct effects of these physicochemical changes on marine invertebrates has begun to improve our understanding of impacts at the level of individual physiologies. However, CO2-related impairment of organisms' contribution to ecological or ecosystem processes has barely been addressed. The burrowing ophiuroid Amphiura filiformis, which has a physiology that makes it susceptible to reduced pH, plays a key role in sediment nutrient cycling by mixing and irrigating the sediment, a process known as bioturbation. Here we investigate the role of A. filiformis in modifying nutrient flux rates across the sediment-water boundary and the impact of CO2- related acidification on this process. A 40 day exposure study was conducted under predicted pH scenarios from the years 2100 (pH 7.7) and 2300 (pH 7.3), plus an additional treatment of pH 6.8. This study demonstrated strong relationships between A. filiformis density and cycling of some nutrients; activity increases the sediment uptake of phosphate and the release of nitrite and nitrate. No relationship between A. filiformis density and the flux of ammonium or silicate were observed. Results also indicated that, within the timescale of this experiment, effects at the individual bioturbator level appear not to translate into reduced ecosystem influence. However, long term survival of key bioturbating species is far from assured and changes in both bioturbation and microbial processes could alter key biogeochemical processes in future, more acidic oceans.
Resumo:
In 1986 participants of the Benthos Ecology Working Group of ICES conducted a synoptic mapping of the infauna of the southern and central North Sea. Together with a mapping of the infauna of the northern North Sea by Eleftheriou and Basford (1989, doi:10.1017/S0025315400049158) this provides the database for the description of the benthic infauna of the whole North Sea in this paper. Division of the infauna into assemblages by TWINSPAN analysis separated northern assemblages from southern assemblages along the 70 m depth contour. Assemblages were further separated by the 30, 50 m and 100 m depth contour as well as by the sediment type. In addition to widely distributed species, cold water species do not occur further south than the northern edge of the Dogger Bank, which corresponds to the 50 m depth contour. Warm water species were not found north of the 100 m depth contour. Some species occur on all types of sediment but most are restricted to a special sediment and therefore these species are limited in their distribution. The factors structuring species distributions and assemblages seem to be temperature, the influence of different water masses, e.g. Atlantic water, the type of sediment and the food supply to the benthos.
Resumo:
In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
The injection of gas into sub-seabed aquifers may lead to the displacement of hypoxic and hypersaline fluids (reservoir formation water) major environmental risk. To investigate this risk, the impact of formation water release on the macrofaunal community in a mesocosm experiment at Solbergstrand was conducted. 20 boxcores were exposed to 4 treatments (high salinity, hypoxic, mixed and tidal) during two weeks. The abundance of macrofauna was quantified for each treatment and richness, eveness and biodiversity indices calculated. The data are reported in this dataset.