205 resultados para 95-612


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fifty-nine samples from the basal 110 m of DSDP Hole 612 (United States Atlantic Margin) were analyzed for palynomorph content. In total, 84 species and subspecies of dinoflagellate cysts were recorded which, on comparison with published data and shipboard analyses, indicate a Campanian to Maestrichtian age for this part of the succession. The Campanian/Maestrichtian contact is taken to occur in the upper part of Core 612-69.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eocene siliceous and calcareous phytoplankton, with emphasis on silicoflagellates, were studied in 62 samples from DSDP Sites 612 and 613 on the continental slope and rise off New Jersey. The mid-latitude assemblages correlate well with assemblages from California, Peru, and offshore of southern Brazil, but are distinctly different from high-latitude cold-water assemblages of the Falkland Plateau off southern Argentina. Coccoliths and silicoflagellates provide evidence for the presence of a fairly complete middle and upper Eocene sequence, represented by a composite of Sites 612 and 613. A major unconformity occurs at the middle Eocene to upper Eocene contact at Site 612. The genus Bachmannocena Locker is emended and proposed as a replacement for genus Mesocena Ehrenberg for ring silicoflagellates. Six new silicoflagellates and one new diatom are described: Bachmannocena apiculata monolineata Bukry, n. subsp., Corbisema amicula Bukry, n. sp., C. bimucronata elegans Bukry, n. subsp., C. hastata incohata Bukry, n. subsp., C. jerseyensis Bukry, n. sp., Dictyocha acuta Bukry, n. sp., and Coscinodiscus eomonoculus Bukry, n. sp. Also, one new replacement name, B. paulschulzn Bukry, nom. nov., and 24 new combinations are proposed for genus Bachmannocena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using methods of analysis from organic geochemistry and organic petrography, we investigated six Pliocene to Maestrichtian samples from DSDP Site 612 and five Pliocene to Eocene samples from DSDP Site 613 for the quantity, type, and thermal maturity of organic matter. At both sites, organic carbon content is low in the Eocene samples (0.10 to 0.20%) and relatively high in the Pliocene/Miocene samples (0.87 to 1.15%). The Maestrichtian samples from Site 612 contain about 0.6% organic carbon. The organic matter is predominantly terrigenous, as indicated by low hydrogen index values from Rock-Eval pyrolysis and the dominance of long-chain wax alkanes in the extractable hydrocarbons. The organic matter is at a low level of thermal maturity; measured vitrinite reflectance values were between 0.27 and 0.44%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lower Eocene calcareous nannofossil limestone cored at DSDP Site 612 on the middle slope off New Jersey represents an almost complete biostratigraphic sequence; only the lowest biozone (CP9a; NP10*) was not recovered. The thickness of the strata (198 m), the good preservation of the nannofossils, and the lack of long hiatuses justify the acceptance of this section as a lower Eocene reference for the western North Atlantic margin. The widely recognized and very similar nannofossil zonations of Martini (NP zones) and Bukry-Okada (CP zones) are emended slightly to make their lower Eocene biozones coeval; in addition, five new subzones are erected that subdivide zones CP10 and CPU (NP12 and NP13). Established biozone names are retained as they are altered little in concept, but alphanumeric code systems are changed somewhat by appending an asterisk (*) to identify zones that are emended. Zone CP10* (NP12*) is divided into two parts, the Lophodolithus nascens Subzone (CP10*a; NP12*a) and the Helicosphaera seminulum Subzone (CP10*b; NP12*b). Zone CPU* (NP13*) is divided into three parts, the Helicosphaera lophota Subzone (CP11*a; NP13*a), the Cyclicargolithuspseudogammation Subzone (CP11*b; NP13*b), and the Rhabdosphaera tenuis Subzone (CP11*c; NP13*c). At Site 612, a time-depth curve based on nannofossil datums dated in previous studies reveals a smoothly declining sediment accumulation rate, from 4.9 cm/10**3yr in CP10* (NP12*) to 2.8 cm/103 yr. in CP12* (NP14*). The ages of first-occurrence datums not previously dated are approximated by projection onto this timedepth curve and are as follows: Helicosphaera seminulum, 55.0 Ma; Helicosphaera lophota, 54.5 Ma; Cyclicargolithus pseudogammation, 53.7 Ma; Rhabdosphaera tenuis, 52.6 Ma; and Rhabdosphaera inflata, 50.2 Ma. At nearby Site 613 on the upper rise, strata of similar age, 139 m thick, contain an unconformity representing Subzone CPll*b (NP13*b) and a hiatus of approximately 1.1 m.y. duration. The sediment accumulation rate in the lower part of this section (9.7 cm/10**3yr.) is twice that observed for equivalent strata at Site 612. The hiatus and the heightened sediment accumulation rate at Site 613 probably represent the effects of episodic mass wasting on the early Eocene continental slope and rise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ninety-three samples from DSDP Leg 95, Sites 612 and 613, were examined for ostracodes to aid in the study of paleoceanography and paleodepth. In total, more than 25 genera were recovered. The most abundant and diverse ostracode assemblages were from the middle Eocene at both sites; lower and upper Eocene and Pliocene-Pleistocene assemblages were less abundant and were dominated by only three or four species. The middle Eocene assemblages were the most diagnostic of paleoenvironment and suggest water depths of 1000 to 2000 m. These assemblages are similar to other middle Eocene assemblages known from the Caribbean and North Atlantic, and signify a relatively cosmopolitan fauna that inhabited moderately deep but relatively warm bottom waters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthic foraminiferal biofacies may vary independently of water depth and water mass; however, calibration of biofacies and stratigraphic ranges with independent paleodepth estimates allows reconstruction of age-depth patterns applicable throughout the deep Atlantic (Tjalsma and Lohmann, 1983). We have attempted to test these faunal calibrations in a continental margin setting, reconstructing Eocene benthic foraminiferal distributions along a dip section afforded by the New Jersey Transect (DSDP Sites 612, 108, 613). The following independent estimates of Eocene depths for the transect were obtained by "backtracking," "backstripping," and by assuming increasing depth downdip ("paleoslope"): Site 612, near the middle/lower bathyal boundary (about 1000 m); Site 108, in the middle bathyal zone (about 1600 m); and Site 613, near the lower bathyal/upper abyssal boundary (about 2000 m). Within uncertainties of backtracking (hundreds of meters), these estimates agree with estimates of paleodepth based on comparison of the New Jersey margin biofacies with other backtracked faunas. The stratigraphic ranges of many benthic taxa correspond to those found at other Atlantic DSDP sites. The major biofacies patterns show: (1) a depth dichotomy between an early to middle Eocene Nuttallides truempyidominated biofacies (greater than 2000 m) and a Lenticulina-Osangularia-Alabamina cf. dissonata biofacies (1000- 2000 m); and (2) a difference between a middle and a late Eocene biofacies at Site 612. The faunal boundary at about 2000 m, between bathyal and abyssal zones, occurs not only on the margin, but also throughout the deep Atlantic. The faunal change between the middle and late Eocene at Site 612 was due to a decrease of Lenticulina spp., the local disappearance of N. truempyi, and establishment of a Bulimina alazanensis-Gyroidinoides spp. biofacies. Although this change could be attributed to local paleoceanographic or water-depth changes, we argue that it is the bathyal expression of a global deep-sea benthic foraminiferal change which occurred across the middle/late Eocene boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of lithologic, foraminiferal, seismostratigraphic, and downhole logging characteristics, we identified seven distinctive erosional unconformities at the contacts of the principal depositional sequences at Site 612 on the New Jersey Continental Slope (water depth 1404 m). These unconformities are present at the Campanian/Maestrichtian, lower Eocene/middle Eocene, middle Eocene/upper Eocene, upper Eocene/lower Oligocene, lower Oligocene/upper Miocene, Tortonian/Messinian, and upper Pliocene/upper Pleistocene contacts. The presence of coarse sand or redeposited intraclasts above six of the unconformities suggests downslope transport from the adjacent shelf by means of sediment gravity flows, which contributed in part to the erosion. Changes in the benthic foraminiferal assemblages across all but the Campanian/Maestrichtian contact indicate that significant changes in the seafloor environment, such as temperature and dissolved oxygen content, took place during the hiatuses. Comparison with modern analogous assemblages and application of a paleoslope model where possible, indicate that deposition took place in bathyal depths throughout the Late Cretaceous and Cenozoic at Site 612. An analysis of two-dimensional geometry and seismic fades changes of depositional sequences along U.S.G.S. multichannel seismic Line 25 suggests that Site 612 was an outer continental shelf location from the Campanian until the middle Eocene, when the shelf edge retreated 130 km landward, and Site 612 became a continental slope site. Following this, a prograding prism of terrigenous debris moved the shelf edge to near its present position by the end of the Miocene. Each unconformity identified can be traced widely on seismic reflection profiles and most have been identified from wells and outcrops on the coastal plain and other offshore basins of the U.S. Atlantic margin. Furthermore, their stratigraphic positions and equivalence to similar unconformities on the Goban Spur, in West Africa, New Zealand, Australia, and the Western Interior of the U.S. suggest that most contacts are correlative with the global unconformities and sea-level falls of the Vail depositional model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative study of benthic foraminifers from the upper Miocene to lower Pliocene section at Site 612 (1404 m present water depth) and the Pliocene section at Site 613 (2323 m present water depth) shows no evidence of widespread downslope transport of shallow-water biofacies or reworking of older material in the greater than 150 µm size fraction. In contrast, upper Miocene sediments from Site 604 (2364 m present water depth) show extensive reworking and downslope transport. At Site 612, benthic foraminifers show a succession from an upper Miocene Bolivina alata-Nonionella sp. biofacies, to an uppermost Miocene Bulimina alazanensis biofacies, to a lower Pliocene Cassidulina reflexa biofacies, to an upper Pliocene Melonis barleeanum-Islandiella laevigata biofacies. Evidence suggests that the Pliocene biofacies are in situ, although they could have been transported downslope from the upper-middle bathyal zone. At Site 613, Uvigerina peregrina dominated the "middle" Pliocene, while Globocassidulina subglobosa was dominant in the early and late Pliocene. High abundances of U. peregrina at Site 613 are associated with high values of sedimentary organic carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Quaternary benthic foraminifers from Leg 95 Sites 612 and 613 were examined with respect to paleoceanographic trends. Data from the two sites indicate the presence of markedly different bottom-water masses, during both glacial and interglacial periods. The dominant interglacial species at Site 612 is Uvigerinct peregrina, which is barely present in corresponding intervals at Site 613. Dominant glacial species are Elphidium excavatum and Cassidulina reniforme at Site 612 and Epistominella takayanagii at Site 613.

Relevância:

100.00% 100.00%

Publicador: