2 resultados para generative and performative modeling
em DigitalCommons - The University of Maine Research
Resumo:
Beginning in the late 1980s, lobster (Homarus americanus) landings for the state of Maine and the Bay of Fundy increased to levels more than three times their previous 20-year means. Reduced predation may have permitted the expansion of lobsters into previously inhospitable territory, but we argue that in this region the spatial patterns of recruitment and the abundance of lobsters are substantially driven by events governing the earliest life history stages, including the abundance and distribution of planktonic stages and their initial settlement as Young-of-Year (YOY) lobsters. Settlement densities appear to be strongly driven by abundance of the pelagic postlarvae. Postlarvae and YOY show large-scale spatial patterns commensurate with coastal circulation, but also multi-year trends in abundance and abrupt shifts in abundance and spatial patterns that signal strong environmental forcing. The extent of the coastal shelf that defines the initial settlement grounds for lobsters is important to future population modeling. We address one part of this definition by examining patterns of settlement with depth, and discuss a modeling framework for the full life history of lobsters in the Gulf of Maine.
Resumo:
We track dated firn horizons within 400 MHz short-pulse radar profiles to find the continuous extent over which they can be used as historical benchmarks to study past accumulation rates in West Antarctica. The 30-40 cm pulse resolution compares with the accumulation rates of most areas. We tracked a particular set that varied from 30 to 90 m in depth over a distance of 600 km. The main limitations to continuity are fading at depth, pinching associated with accumulation rate differences within hills and valleys, and artificial fading caused by stacking along dips. The latter two may be overcome through multi-kilometer distances by matching the relative amplitude and spacing of several close horizons, along with their pulse forms and phases. Modeling of reflections from thin layers suggests that the - 37 to - 50 dB range of reflectivity and the pulse waveforms we observed are caused by the numerous thin ice layers observed in core stratigraphy. Constructive interference between reflections from these close, high-density layers can explain the maintenance of reflective strength throughout the depth of the firn despite the effects of compaction. The continuity suggests that these layers formed throughout West Antarctica and possibly into East Antarctica as well.