2 resultados para NO CO O-2

em DigitalCommons - The University of Maine Research


Relevância:

40.00% 40.00%

Publicador:

Resumo:

One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.