22 resultados para Glaciers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations in Wright Valley, adjacent to the Transantarctic Mountains in East Antarctica, shed light on the question of whether high-latitude Pliocene climate was warm enough to cause widespread deglaciation of the East Antarctic craton with a concurrent Magellanic moorland-like environment. If Pliocene age diatoms, presently in glaciogenic deposits high in the Transantarctic Mountains, had come from seaways on the East Antarctic craton, an expanding Late Pliocene ice sheet must have first eroded them from marine sediments and then deposited the diatoms at their present high-altitude locations. This hypothetical expanding glacier would have had to have come through Wright Valley. Glacial drift sediments from the central Wright Valley were mapped, sampled, analyzed, and Ar-40/Ar-39 whole rock dated. Our evidence indicates that an East Antarctic outlet glacier has not expanded through Wright Valley, and hence cannot have overridden the Dry Valleys sector of the Transantarctic Mountains, any time in the past 3.8 myr. Rather, there was only moderate Pliocene expansion of local cola-based alpine glaciers and continuous cold-desert conditions in Wright Valley. Persistence of a cold-desert paleoenvironment implies that the sector of the East Antarctic Ice Sheet adjacent to Wright Valley has remained relatively stable without melting ablation zones since at least 3.8 Ma, in Early Pliocene time. A further implication is that Antarctic Ice Sheet behavior in the Pliocene was much like that in the Quaternary, when the ice sheet consisted of a stable, terrestrial core in East Antarctica and a dynamic, marine-based appendage in West Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crevasses can be ignored in studying the dynamics of most glaciers because they are only about 20 m deep, a small fraction of ice thickness. In ice shelves, however, s urface crevasses 20 m deep often reach sealevel and bottom crevasses can move upward to sea-level (Clough, 1974; Weertman, 1980). The ice shelf is fractured completely through if surface and basal crevasses meet (Barrett, 1975; Hughes, 1979). This is especially likely if surface melt water fills surface crevasses (Weertman, 1973; Pfeffer, 1982; Fastook and Schmidt, 1982). Fracture may therefore play an important role i n the disintegration of ice shelves. Two fracture criteria which can be evaluated experimentally and applied to ice shelves, are presented. Fracture is then examined for the general strain field of an ice shelf and for local strain fields caused by shear rupture alongside ice streams entering the ice shelf, fatigue rupture along ice shelf grounding lines, and buckling up-stream from ice rises. The effect of these fracture patterns on the stability of Antarctic ice shelves and the West Antarctic ice sheet is then discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Empirical data suggest that the race of calving of grounded glaciers terminating in water is directly proportional to the water depth. Important controls on calving may be the extent to which a calving face tends to become oversteepened by differential flow within the ice and the extent to which bending moments promote extrusion and bottom crevassing at the base of a calving face. Numerical modelling suggests that the tendency to become oversteepened increases roughly linearly with water depth. In addition, extending longitudinal deviatoric stresses at the base of a calving face increase with water depth. These processes provide a possible physical explanation for the observed calving-rate/water-depth relation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the finite-element we have modeled the stress field near the calving face of an idealized tidewater glacier under a variety of assumptions about submarine calving-face height, subaerial calving-face height, and ice rheology These simulations all suggest that a speed maximum should be present at the calving face near the waterline. In experiments without crevassing, the decrease in horizontal velocity above this maximum culminates in a zone of longitudinal compression at the surface somewhat Up-glacier from the face. This zone of compression appears to be a consequence of the non-linear rheology of ice. It disappears when a linear rheology is assumed. Explorations of the near-surface stress field indicate that when pervasive crevassing of the surface ice is accounted for in the simulations (by rheological softening), the zone of compressive strain rates does not develop. Variations in the pattern of horizontal velocity with glacier thickness support the contention that calving rates should increase with water depth at the calving face. In addition, the height of the subaerial calving face may have an importance that is not visible ill Current field data owing to the lack of variation in height of such faces in nature. Glaciers with lower calving faces may not have sufficient tensile stress to calve actively, while tensile stresses in simulated higher faces are sufficiently high that such faces will be unlikely to build in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fresh-snow sampling campaign was conducted during the late austral summer of 2006 in the accumulation zone of Glaciar Marinelli, located in the Cordillera Darwin, Tierra del Fuego, Chile. Snow samples were analyzed for stable isotopes (delta(18)O, major soluble ions (Na', K', Ca, Mg, a NO(3)(-), SO(4)(2-), MS(-)) and major and trace elements (Na, Mg, Al, Fe, Ca, Sr, Cd, Cs, Ba, La, Ce, Pr, Dy, Ho, Er, Bi, U, As, Ti, V, Cr, Mn). The dominance of marine chemistry resembles that in studies from Patagonian glaciers. Snow chemistry was dominantly loaded by marine species (Cl(-), Na(+) and ssSO(4)(2-)), while contributions of crustal species (e.g. Al and Fe) were very low. Empirical orthogonal function analysis suggests two possible dust sources, one represented by Al and Fe and the other by La, Ce and Pr. Enrichment-factor calculations suggest the majority of elements are within average upper-crustal ratios, but major enrichments of Bi and Cd (hundreds of times) suggest possible anthropogenic sources. Linear correlation of delta(18)O and barometric pressure (r = 0.60, p < 0.007) suggests a potential 'amount effect' relationship between depleted delta(18)O ratios and stronger storm conditions (e.g. greater precipitation). The snow-chemistry records from Glaciar Marinelli are the first measured in Tierra del Fuego, the southernmost glaciated region outside Antarctica.