4 resultados para Glaciers

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of finding the depths of glaciers and the current methods are discussed briefly. Radar methods are suggested as a possible improvement for, or adjunct to, seismic and gravity survey methods. The feasibility of propagating electromagnetic waves in ice and the maximum range to be expected are then investigated theoretically with the aid of experimental data on the dielectric properties of ice. It is found that the maximum expected range is great enough to measure the depth of many glaciers at the lower radar frequencies if there is not too much liquid water present. Greater ranges can be attained by going to lower frequencies.

The results are given of two expeditions in two different years to the Seward Glacier in the Yukon Territory. Experiments were conducted on a small valley glacier whose depth was determined by seismic sounding. Many echoes were received but their identification was uncertain. Using the best echoes, a profile was obtained each year, but they were not in exact agreement with each other. It could not be definitely established that echoes had been received from bedrock. Agreement with seismic methods for a considerable number of glaciers would have to be obtained before radar methods could be relied upon. The presence of liquid water in the ice is believed to be one of the greatest obstacles. Besides increasing the attenuation and possibly reflecting energy, it makes it impossible to predict the velocity of propagation. The equipment used was far from adequate for such purposes, so many of the difficulties could be attributed to this. Partly because of this, and the fact that there are glaciers with very little liquid water present, radar methods are believed to be worthy of further research for the exploration of glaciers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glaciers are often assumed to deform only at slow (i.e., glacial) rates. However, with the advent of high rate geodetic observations of ice motion, many of the intricacies of glacial deformation on hourly and daily timescales have been observed and quantified. This thesis explores two such short timescale processes: the tidal perturbation of ice stream motion and the catastrophic drainage of supraglacial meltwater lakes. Our investigation into the transmission length-scale of a tidal load represents the first study to explore the daily tidal influence on ice stream motion using three-dimensional models. Our results demonstrate both that the implicit assumptions made in the standard two-dimensional flow-line models are inherently incorrect for many ice streams, and that the anomalously large spatial extent of the tidal influence seen on the motion of some glaciers cannot be explained, as previously thought, through the elastic or viscoelastic transmission of tidal loads through the bulk of the ice stream. We then discuss how the phase delay between a tidal forcing and the ice stream’s displacement response can be used to constrain in situ viscoelastic properties of glacial ice. Lastly, for the problem of supraglacial lake drainage, we present a methodology for implementing linear viscoelasticity into an existing model for lake drainage. Our work finds that viscoelasticity is a second-order effect when trying to model the deformation of ice in response to a meltwater lake draining to a glacier’s bed. The research in this thesis demonstrates that the first-order understanding of the short-timescale behavior of naturally occurring ice is incomplete, and works towards improving our fundamental understanding of ice behavior over the range of hours to days.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My focus in this thesis is to contribute to a more thorough understanding of the mechanics of ice and deformable glacier beds. Glaciers flow under their own weight through a combination of deformation within the ice column and basal slip, which involves both sliding along and deformation within the bed. Deformable beds, which are made up of unfrozen sediment, are prevalent in nature and are often the primary contributors to ice flow wherever they are found. Their granular nature imbues them with unique mechanical properties that depend on the granular structure and hydrological properties of the bed. Despite their importance for understanding glacier flow and the response of glaciers to changing climate, the mechanics of deformable glacier beds are not well understood.

Our general approach to understanding the mechanics of bed deformation and their effect on glacier flow is to acquire synoptic observations of ice surface velocities and their changes over time and to use those observations to infer the mechanical properties of the bed. We focus on areas where changes in ice flow over time are due to known environmental forcings and where the processes of interest are largely isolated from other effects. To make this approach viable, we further develop observational methods that involve the use of mapping radar systems. Chapters 2 and 5 focus largely on the development of these methods and analysis of results from ice caps in central Iceland and an ice stream in West Antarctica. In Chapter 3, we use these observations to constrain numerical ice flow models in order to study the mechanics of the bed and the ice itself. We show that the bed in an Iceland ice cap deforms plastically and we derive an original mechanistic model of ice flow over plastically deforming beds that incorporates changes in bed strength caused by meltwater flux from the surface. Expanding on this work in Chapter 4, we develop a more detailed mechanistic model for till-covered beds that helps explain the mechanisms that cause some glaciers to surge quasi-periodically. In Antarctica, we observe and analyze the mechanisms that allow ocean tidal variations to modulate ice stream flow tens of kilometers inland. We find that the ice stream margins are significantly weakened immediately upstream of the area where ice begins to float and that this weakening likely allows changes in stress over the floating ice to propagate through the ice column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface mass loads come in many different varieties, including the oceans, atmosphere, rivers, lakes, glaciers, ice caps, and snow fields. The loads migrate over Earth's surface on time scales that range from less than a day to many thousand years. The weights of the shifting loads exert normal forces on Earth's surface. Since the Earth is not perfectly rigid, the applied pressure deforms the shape of the solid Earth in a manner controlled by the material properties of Earth's interior. One of the most prominent types of surface mass loading, ocean tidal loading (OTL), comes from the periodic rise and fall in sea-surface height due to the gravitational influence of celestial objects, such as the moon and sun. Depending on geographic location, the surface displacements induced by OTL typically range from millimeters to several centimeters in amplitude, which may be inferred from Global Navigation and Satellite System (GNSS) measurements with sub-millimeter precision. Spatiotemporal characteristics of observed OTL-induced surface displacements may therefore be exploited to probe Earth structure. In this thesis, I present descriptions of contemporary observational and modeling techniques used to explore Earth's deformation response to OTL and other varieties of surface mass loading. With the aim to extract information about Earth's density and elastic structure from observations of the response to OTL, I investigate the sensitivity of OTL-induced surface displacements to perturbations in the material structure. As a case study, I compute and compare the observed and predicted OTL-induced surface displacements for a network of GNSS receivers across South America. The residuals in three distinct and dominant tidal bands are sub-millimeter in amplitude, indicating that modern ocean-tide and elastic-Earth models well predict the observed displacement response in that region. Nevertheless, the sub-millimeter residuals exhibit regional spatial coherency that cannot be explained entirely by random observational uncertainties and that suggests deficiencies in the forward-model assumptions. In particular, the discrepancies may reveal sensitivities to deviations from spherically symmetric, non-rotating, elastic, and isotropic (SNREI) Earth structure due to the presence of the South American craton.