5 resultados para Scaling and root planing
em University of Connecticut - USA
Resumo:
Little data concerning the perceived success of implant therapy in comparison with endodontic treatment exists. While the criteria used to measure the outcome of each modality are not the same, it is not clear if this is appreciated by practicing dentists. The purpose of the study was to evaluate the perceived outcome of implant therapy in comparison to endodontic treatment. A 23 question Web-based survey was distributed to 648 dentists who matriculated from the University of Connecticut School Of Dental Medicine over the past 30 years. The response rate was 47%. Sixty-seven percent of respondents were general dentists. Forty-nine percent of respondents did not know different criteria exist in the literature and are used to evaluate implant and root canal treatment. Fifty-four percent of dentists felt the prognosis of implant therapy was the same as or better than endodontic treatment of teeth with vital pulps. Thirty percent of responders thought root canal treatment of teeth with necrotic pulp was superior to implants and only 16% thought retreatment was preferable. Treatment planning for implant placement vs. retreatment of a restorable tooth was 46% and 32%, respectively. A third of the respondents felt that the role of endodontics will decline in the future. Dentists’ primary source of information regarding implant therapy was continuing education; however, their primary source of information regarding endodontic treatment was their dental program. Dentists felt the prognosis of implant therapy was as good or superior to endodontic treatment of teeth with vital, necrotic or previously treated pulps.
Resumo:
Few studies have directly related turfgrass growth and quality responses to extractable soil P concentrations in sand greens. A 3-yr field experiment was conducted on a sand-based putting green to determine creeping bentgrass (Agrostis stolonifera L.) growth and quality responses to extractable soil P. Extractable soil P concentrations were obtained by using the modified-Morgan, Mehlich-1, and Bray-1 extractants. Critical extractable P concentrations (above which there is a low probability of response to increasing soil P concentrations) for shoot counts, thatch thickness, relative clipping yields, quality ratings, P deficiency ratings, tissue P concentrations, and root weights were determined using Cate-Nelson (CN) and quadratic response and plateau (QRP) models. Both models fit the data relatively well in most cases (R2 values from 0.12 to 0.89), and critical concentrations for the QRP models were always greater than the CN models. Critical extractable P concentrations were lowest for the modified-Morgan extractant (1.4 to 12.0 mg kg(-1)) and greatest for the Mehlich-1 extractant (14.1 to 63.6 mg kg(-1)). Application of estimated critical extractable P concentrations in this study could be used to substantiate observed responses or explain lack of responses in other previously reported creeping bentgrass P studies. We found better model fits with modified-Morgan extractable P for bentgrass quality ratings, deficiency ratings, and tissue P concentrations than with P extracted by the Mehlich or Bray methods. This suggests that the modified-Morgan extractant may have advantages over stronger-acid extractants when used on sand-based media. The results can be used to revise or update existing P fertilization recommendations for bent-grass grown on sand-based media.
Resumo:
Reinforcement inclusions have been advocated to alleviate wear, compaction, and unstable surfaces in sports fields, but little research on the effects of these materials has been conducted in the USA. Experiments were established on a native silt loam and a sand rootzone matrix, seeded with a Kentucky bluegrass (Poa pratensis L.) blend, at the Joseph Troll Turf Research Center, University of Massachusetts, Amherst, USA to determine the effects of reinforcement inclusions on wear, surface hardness, traction, ball roll, ball bounce resilience, water infiltration rate, soil bulk density, air porosity, total porosity, and root weights. Three types of reinforcement inclusions (Sportgrass, Netlon, Turfgrids) were tested along with a non-reinforced control in a three year study. The treatments were set out in a randomized complete block design with four replications in both soils. No inclusion provided less wear or greater infiltration or air-filled porosity relative to the control. Reinforcement inclusions showed significant differences, however, in surface hardness, traction, and ball roll relative to the control, although this varied with the time of year. Infiltration rates, airfilled porosity, total pore space, bulk density, hardness, traction, ball roll, and ball rebound were greater on the sand rootzone than on the silt loam. Significant correlations were present between soil bulk density, surface hardness, traction, and ball roll. Based on our study, the use of reinforcement inclusions to provide better wear tolerance for sand or native soil athletic fields is not warranted. Certain playing surface characteristics, however, may be slightly improved with the use of reinforcement inclusions. The use of sands for sports surfaces is justified based upon the improvement in playing quality characteristics and soil physical properties important to a good playing surface.
Resumo:
There is a lack of plant response to fertilizer K in some sandy soils even though routine soil tests for soil available K are shown to be low. This lack of plant response to K fertilizer application may be explained by K release from nonexchangeable forms. Greenhouse and laboratory experiments were conducted to evaluate (a) response of bentgrass (Agrostis palustris [Agrostis stolonifera var. palustris]) cv. Pencross grown in rootzones with different sand sources to K fertilizer application and (b) K release from nonexchangeable forms from the different sand sources as an index to K availability. Experimental variables in the greenhouse were 2 K levels (0 and 250 mg K/kg soil) and 8 sand rootzone sources. Rootzone soils were sub-irrigated to ensure no K loss from leaching. Two laboratory methods (boiling 1 M HNO3 extraction and continuous leaching with 0.01 M HCl) and total K uptake by the bentgrass were employed to index K release from nonexchangeable forms for each rootzone source. K fertilizer application significantly increased bentgrass yield growing in one rootzone source and root weight in 3 rootzone sources. K uptake by bentgrass and the 2 laboratory methods showed important differences in K release from the sand rootzones. The K removed by the 2 laboratory methods was closely related to leaf tissue K and K uptake, with the 1 M HNO3 extraction method providing the closest fit. The release of K from primary minerals in some rootzones with high sand content is proceeding at rates to satisfy bentgrass requirements for K. The 1 M HNO3 extraction method may provide an alternative to the routine laboratory procedures presently being used to measure the extractable K in sand-based constructed putting greens by measuring K contributed by nonexchangeable forms.
Resumo:
Fall season fertilization is a widely recommended practice for turfgrass. Fertilizer applied in the fall, however, may be subject to substantial leaching losses. A field study was conducted in Connecticut to determine the timing effects of fall fertilization on nitrate N (NO3-N) leaching, turf color, shoot density, and root mass of a 90% Kentucky bluegrass (Poa pratensis L.), 10% creeping red fescue (Festuca rubra L.) lawn. Treatments consisted of the date of fall fertilization: 15 September, 15 October, 15 November, 15 December, or control which received no fall fertilizer. Percolate water was collected weekly with soil monolith lysimeters. Mean log10 NO3-N concentrations in percolate were higher for fall fertilized treatments than for the control. Mean NO3-N mass collected in percolate water was linearly related to the date of fertilizer application, with higher NO3-N loss for later application dates. Applying fall fertilizer improved turf color and density but there were no differences in color or density among applications made between 15 October and 15 December. These findings suggest that the current recommendation of applying N in mid- to late November in southern New England may not be compatible with water quality goals.