5 resultados para non-specific
em DigitalCommons@The Texas Medical Center
Resumo:
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoid malignancy representing 5-10% of all non-Hodgkin’s lymphomas. It is distinguished by the t(11;14)(q13;q32) chromosomal translocation that juxtaposes the proto-oncogene CCND1, which encodes cyclin D1 at 11q13 to the IgH gene at 14q32. MCL patients represent about 6% of all new cases of Non-Hodgkin’s lymphomas per year or about 3,500 new cases per year. MCL occurs more frequently in older adults – the average age at diagnosis is the mid-60s with a male-to-female ratio of 2-3:1. It is typically characterized by the proliferation of neoplastic B-lymphocytes in the mantle zone of the lymph node follicle that have a prominent inclination to disseminate to other lymphoid tissues, bone marrow, peripheral blood and other organs. MCL patients have a poor prognosis because they develop resistance/relapse to current non-specific therapeutic regimens. It is of note that the exact molecular mechanisms underlying the pathogenesis of MCL are not completely known. It is reasonable to anticipate that better characterization of these mechanisms could lead to the development of specific and likely more effective therapeutics to treat this aggressive disease. The type I insulin-like growth factor receptor (IGF-IR) is thought to be a key player in several different solid malignancies such as those of the prostate, breast, lung, ovary, skin and soft tissue. In addition, recent studies in our lab showed evidence to support a pathogenic role of IGF-IR in some types of T-cell lymphomas and chronic myeloid leukemia. Constitutively active IGF-IR induces its oncogenic effects through the inhibition of apoptosis and induction of transformation, metastasis, and angiogenesis. Previous studies have shown that signaling through IGF-IR leads to the vi activation of multiple signaling transduction pathways mediated by the receptor-associated tyrosine kinase domain. These pathways include PI3K/Akt, MAP kinase, and Jak/Stat. In the present study, we tested the possible role of IGF-IR in MCL. Our results demonstrate that IGF-IR is over-expressed in mantle cell lymphoma cell lines compared with normal peripheral blood B- lymphocytes. Furthermore, inhibition of IGF-IR by the cyclolignan picropodophyllin (PPP) decreased cell viability and cell proliferation in addition to induction of apoptosis and G2/M cell cycle arrest. Screening of downstream oncogenes and apoptotic proteins that are involved in both IGF-IR and MCL signaling after treatment with PPP or IGF-IR siRNA showed significant alterations that are consistent with the cellular changes observed after PPP treatment. Therefore, our findings suggest that IGF-IR signaling contributes to the survival of MCL and thus may prove to be a legitimate therapeutic target in the future.
Resumo:
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^
Resumo:
In vitro incubation of acetylcholinesterase from brain tissue of several species with organophosphate compounds indicated that the concentrations required to inhibit 50% of acetylcholinesterase activity (IC(,50)) differed from species to species for the same compound (Murphy, et al., 1968; Andersen, et al., 1972, 1977 and 1978).^ The hypothesis that non-specific binding proteins (Lauwerys and Murphy, 1969a,b) exerts a protective effect on acetylcholinesterase, and thus cause the differences observed in IC(,50) studies was tested by a ('3)H-DFP binding experiment. It was found that differences in the amount of non-specific binding protein cannot explain the observed differences observed in IC(,50) studies.^ An alternative hypothesis, that acetylcholinesterase from different species have different affinities for binding and/or different rates of phosphorylation by organophosphate insecticides was tested by determining the apparent affinity constant (k(,a)) and apparent rate of phosphorylation (k(,p)). Kinetic studies indicated that acetylcholinesterases from different species have different sensitivities to inhibition by organophosphate insecticides, and the differences are due to different affinities for binding and/or different rates of phosphorylation by the same organophosphate compound.^ Studies of the spontaneous reactivation of acetylcholinesterase after inhibition by organophosphate insecticides also indicated that acetylcholinesterases from different species have different rates and extents of spontaneous reactivation. This further substantiates the hypothesis that acetylcholinesterases from different species have different kinetic characteristics with respect to organophosphate insecticides inhibition.^ Eleven paraoxon analogs were synthesized for a quantitative structure-activity relationship study. It was found that the electron-withdrawing power ((sigma)) and hydrophobicity ((PARAGR)) of the substituent are important in determining the anti-cholinesterase activity of paraoxon analogs. Thus, predictions of species differences in acetylcholinesterase sensitivities to paraoxon analogs can be made if the physicochemical parameters ((sigma) and (PARAGR)) of the substituents are known.^ In another approach, i.e. enzyme modeling, the sensitivity of rat brain acetylcholinesterase to organophosphate insecticides was used as the independent variable to predict the sensitivities of acetylcholinesterases from other species to the same compound. Regression equations were derived for each species based on nineteen organophosphate insecticides studied. It was found, that in addition to paraoxon analogs, this method is also applicable to other organophosphate compounds with wide variations in structure. Thus, the sensitivities of acetylcholinesterases from other species can also be predicted from the sensitivity of rat brain acetylcholinesterase. ^
Resumo:
Nuclear imaging is used for non-invasive detection, staging and therapeutic monitoring of tumors through the use of radiolabeled probes. Generally, these probes are used for applications in which they provide passive, non-specific information about the target. Therefore, there is a significant need for actively-targeted radioactive probes to provide functional information about the site of interest. This study examined endostatin, an endogenous inhibitor of tumor angiogenesis, which has affinity for tumor vasculature. The major objective of this study was to develop radiolabeled analogues of endostatin through novel chemical and radiochemical syntheses, and to determine their usefulness for tumor imaging using in vitro and in vivo models of vascular, mammary and prostate tumor cells. I hypothesize that this binding will allow for a non-invasive approach to detection of tumor angiogenesis, and such detection can be used for therapeutic monitoring to determine the efficacy of anti-angiogenic therapy. ^ The data showed that endostatin could be successfully conjugated to the bifunctional chelator ethylenedicysteine (EC), and radiolabeled with technetium-99m and gallium-68, providing a unique opportunity to use a single precursor for both nuclear imaging modalities: 99mTc for single photon emission computed tomography and 68Ga for positron emission tomography, respectively. Both radiolabeled analogues showed increased binding as a function of time in human umbilical vein endothelial cells and mammary and prostate tumor cells. Binding could be blocked in a dose-dependent manner by unlabeled endostatin implying the presence of endostatin receptors on both vascular and tumor cells. Animal biodistribution studies demonstrated that both analogues were stable in vivo, showed typical reticuloendothelial and renal excretion and produced favorable absorbed organ doses for application in humans. The imaging data provide evidence that the compounds quantitate tumor volumes with clinically-useful tumor-to-nontumor ratios, and can be used for treatment follow-up to depict changes occurring at the vascular and cellular levels. ^ Two novel endostatin analogues were developed and demonstrated interaction with vascular and tumor cells. Both can be incorporated into existing nuclear imaging platforms allowing for potential wide-spread clinical benefit as well as serving as a diagnostic tool for elucidation of the mechanism of action of endostatin. ^
Resumo:
Purpose. To evaluate the use of the Legionella Urine Antigen Test as a cost effective method for diagnosing Legionnaires’ disease in five San Antonio Hospitals from January 2007 to December 2009. ^ Methods. The data reported by five San Antonio hospitals to the San Antonio Metropolitan Health District during a 3-year retrospective study (January 2007 to December 2009) were evaluated for the frequency of non-specific pneumonia infections, the number of Legionella Urine Antigen Tests performed, and the percentage of positive cases of Legionnaires’ disease diagnosed by the Legionella Urine Antigen Test.^ Results. There were a total of 7,087 cases of non-specific pneumonias reported across the five San Antonio hospitals studied from 2007 to 2009. A total of 5,371 Legionella Urine Antigen Tests were performed from January, 2007 to December, 2009 across the five San Antonio hospitals in the study. A total of 38 positive cases of Legionnaires’ disease were identified by the use of Legionella Urinary Antigen Test from 2007-2009.^ Conclusions. In spite of the limitations of this study in obtaining sufficient relevant data to evaluate the cost effectiveness of Legionella Urinary Antigen Test in diagnosing Legionnaires’ disease, the Legionella Urinary Antigen Test is simple, accurate, faster, as results can be obtained within minutes to hours; and convenient because it can be performed in emergency room department to any patient who presents with the clinical signs or symptoms of pneumonia. Over the long run, it remains to be shown if this test may decrease mortality, lower total medical costs by decreasing the number of broad-spectrum antibiotics prescribed, shorten patient wait time/hospital stay, and decrease the need for unnecessary ancillary testing, and improve overall patient outcomes.^