63 resultados para master gene model

em DigitalCommons@The Texas Medical Center


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Transcription of the Bacillus anthracis structural genes for the anthrax toxin proteins and biosynthetic operon for capsule are positively regulated by AtxA, a transcription regulator with unique properties. Consistent with the role of atxA in virulence factor expression, a B. anthracis atxA-null mutant is avirulent in a murine model for anthrax. In batch culture, multiple signals impact atxA transcript levels, and the timing and steady state level of atxA expression is critical for optimal toxin and capsule synthesis. Despite the apparent complex control of atxA transcription, only one trans-acting protein, the transition state regulator AbrB, has been demonstrated to directly interact with the atxA promoter. The AbrB-binding site has been described, but additional cis-acting control sequences have not been defined. Using transcriptional lacZ fusions, electrophoretic mobility shift assays, and Western blot analysis, the cis-acting elements and trans-acting factors involved in regulation of atxA in B. anthracis strains containing either both virulence plasmids, pXO1 and pXO2, or only one plasmid, pXO1, were studied. This work demonstrates that atxA transcription from the major start site P1 is dependent upon a consensus sequence for the housekeeping sigma factor SigA, and an A+T-rich upstream element (UP-element) for RNA polymerase (RNAP). In addition, the data show that a trans-acting protein(s) other than AbrB negatively impacts atxA transcription when it binds specifically to a 9-bp palindrome within atxA promoter sequences located downstream of P1. Mutation of the palindrome prevents binding of the trans-acting protein(s) and results in a corresponding increase in AtxA and anthrax toxin production in a strain- and culture-dependent manner. The identity of the trans-acting repressor protein(s) remains elusive; however, phenotypes associated with mutation of the repressor binding site have revealed that the trans-acting repressor protein(s) indirectly controls B. anthracis development. Mutation of the repressor binding site results in misregulation and overexpression of AtxA in conditions conducive for development, leading to a marked sporulation defect that is both atxA- and pXO2-61-dependent. pXO2-61 is homologous to the sensor domain of sporulation sensor histidine kinases and is proposed to titrate an activating signal away from the sporulation phosphorelay when overexpressed by AtxA. These results indicate that AtxA is not only a master virulence regulator, but also a modulator of proper B. anthracis development. Also demonstrated in this work is the impact of the developmental regulators AbrB, Spo0A, and SigH on atxA expression and anthrax toxin production in a genetically incomplete (pXO1+, pXO2-) and genetically complete (pXO1+, pXO2+) strain background. AtxA and anthrax toxin production resulting from deletion of the developmental regulators are strain-dependent suggesting that factors on pXO2 are involved in control of atxA. The only developmental deletion mutant that resulted in a prominent and consistent strain-independent increase in AtxA protein levels was an abrB-null mutant. As a result of increased AtxA levels, there is early and increased production of anthrax toxins in an abrB-null mutant. In addition, the abrB-null mutant exhibited an increase in virulence in a murine model for anthrax. In contrast, virulence of the atxA promoter mutant was unaffected in a murine model for anthrax despite the production of 5-fold more AtxA than the abrB-null mutant. These results imply that AtxA is not the only factor impacting pathogenesis in an abrB-null mutant. Overall, this work highlights the complex regulatory network that governs expression of atxA and provides an additional role for AtxA in B. anthracis development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stroke is the third leading cause of death and a major debilitating disease in the United States. Multiple factors, including genetic factors, contribute to the development of the disease. Genome-wide association studies (GWAS) have contributed to the identification of genetic loci influencing risk for complex diseases, such as stroke. In 2010, a GWAS of incident stroke was performed in four large prospective cohorts from the USA and Europe and identified an association of two Single Nucleotide Polymorphisms (SNPs) on chromosome 12p13 with a greater risk of ischemic stroke in individuals of European and African-American ancestry. These SNPs are located 11 Kb upstream of the nerve injury-induced gene 2, Ninjurin2 (NINJ2), suggesting that this gene may be involved in stroke pathogenesis. NINJ2 is a cell adhesion molecule induced in the distal glial cells from a sciatic-nerve injury at 7-days after injury. In an effort to ascribe a possible role of NINJ2 in stroke, we have assessed changes in the level of gene and protein expression of NINJ2 following a time-course from a transiently induced middle cerebral artery ischemic stroke in mice brains. We report an increase in the gene expression of NINJ2 in the ischemic and peri-infarct (ipsilateral) cortical tissues at 7 and 14-days after stroke. We also report an increase in the protein expression of NINJ2 in the cortex of both the ipsilateral and contralateral cortical tissues at the same time-points. We conclude that the expression of NINJ2 is regulated by an ischemic stroke in the cortex and is consistent with NINJ2 being involved in the recovery time-points of stroke.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a human terato-carcinoma cell line, PA-1, the functional role of the oncogenes and tumor suppressor gene involved in the multistep process of carcinogenesis have been analyzed. The expression of AP-2 was strongly correlated with the susceptibility to ras transformation. The differential responsiveness to growth factors between stage 1 ras resistant cells and stage 2 ras susceptible cells was observed, indicating that the ability of stage 2 cells to respond to the mutated ras oncogenes in transformation correlated with the ability to be stimulated by certain growth factors. Using differential screening of cDNA libraries, a number of differentially expressed cDNA clones was isolated. One of those, clone 12, is overexpressed in ras transformed stage 3 cells. The amino acid sequence of clone 12 is almost identical to a mouse LLrep3 gene that was growth-regulated, and 78% similar to a yeast ribosomal protein S4. These results suggest that the S4 gene may be involved in regulation of growth. Clone 9 is expressed in stage 1 ras resistant cells (3.5-kb and 3.0-kb transcripts) but the expression of this clone in stage 2 ras susceptible cells and stage 3 ras-transformed cells is greatly diminished. The expression of this cDNA clone was increased to at least five fold in ras resistant cells and nontumorigenic hybrids treated with retinoic acid but not increased in retinoic acid treated ras susceptible cells, ras transformed cells and the tumorigenic segregants. Partial sequence of this clone showed no homology to the sequences in Genbank. These findings suggest that clone 9 could be a suppressor gene or the genes that are involved in the biochemical pathway of tumor suppression or neurogenic differentiation. The apparent pleiotropic effect of the loss of this suppressor gene function support Harris' proposal that tumor suppressor genes regulate differentiation. The tumor suppressor gene may act as negative regulator of tumor growth by controlling gene expression in differentiation. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of the placenta is one of the first and most important developmental events that occur in early mammalian embryogenesis. Even given this importance of the placenta, the academic community has largely ignored studying gene regulation during the development and maturation of the placenta. For this reason, an in-depth study of gene regulation in the trophoblast layer of the placenta using murine Adenosine Deaminase (Ada) as a model system has been undertaken. It has been determined that Ada is highly expressed in the placenta and is critical for embryo development. Dr. Kellems' laboratory has previously described a 1.8 kb fragment of the Ada 5 ′ flanking region that is capable of directing trophoblast specific expression in a transgenic model system. Preliminary studies have demonstrated several critical portions of this fragment that are necessary for the correct tissue specific expression in the placenta. My first specific aim was to elucidate the trans factor binding to one of these sequences, the FP3. Through electromobility shift assays (EMSA), the 30 bp FP3 was narrowed to a 5 bp sequence which computer databases predicted bound to Acute Myeloid Leukemia 1 (AML-1). This was confirmed by supershift analysis. The functional importance of this binding was demonstrated by a transgenic approach. A significant difference in expression of the reporter in the placenta was seen when the 5 bp sequence was mutated. This finding is a novel use for the AML-1 transcription factor which is the DNA binding portion of the heterodimer Core Binding Protein (CBP). The 5′ 240 bp region has also been demonstrated to contain functionally significant sequence. Through EMSA assays and computer predictions, the area has been narrowed to two pertinent regions that are predicted to contain GATA binding motifs. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The poly-D-glutamic acid capsule of Bacillus anthracis is considered essential for lethal anthrax disease. Yet investigations of capsule function have been limited primarily to attenuated B. anthracis strains lacking certain genetic elements. In work presented in this thesis, I constructed and characterized a genetically complete (pXO1 + pXO2+) B. anthracis strain (UT500) and isogenic mutants deleted for two previously identified capsule gene regulators, atxA and acpA, and a newly-identified regulator, acpB. Results of transcriptional analysis and microscopy revealed that atxA controls expression of the first gene of the capsule biosynthesis operon, capB, via positive transcriptional regulation of acpA and acpB. acpA and acpB appear to be partial functional homologs. Deletion of either gene alone has little effect on capsule synthesis. However, a mutant deleted for both acpA and acpB is noncapsulated. Thus, in contrast to previously published models, my results suggest that atxA is the master regulator of cap gene expression in a genetically complete strain. A detailed transcriptional analysis of capB and the regulatory genes was performed to establish the effects of the regulators and CO2/bicarbonate on specific mRNAs of target genes. CO2/bicarbonate is a well-established signal for B. anthracis capsule synthesis in culture. Taqman RT-PCR results indicated that growth in the presence of elevated CO2 greatly increased expression of acpA, acpB and capB but not atxA. 5′ end mapping of capB and acpA revealed atxA-regulated and atxA-independent transcriptional start sites for both genes. All atxA-regulated start sites were also CO2-regulated. A single atxA-independent start site was identified 5 ′ of acpB. However, RT-PCR analysis indicated that capD and acpB are co-transcribed. Thus, it is likely that atxA-mediated control of acpB expression occurs via transcriptional activation of the atxA-regulated start sites of capB. Finally, I examined the contribution of the B. anthracis capsule to virulence. The virulence of the parent strain, mutants deleted for the capsule biosynthesis genes ( capBCAD), and mutants missing the capsule regulator genes was compared using a mouse model for inhalation anthrax. The data indicate that in this model, capsule is essential for virulence. Mice survived infection with the noncapsulated capBCAD and acpA acpB mutants. These mutants initiated germination in the lung, but did not disseminate to the spleen. The acpA mutant had an LD50 value similar to the parent strain and was able to disseminate and cause lethal infection. Unexpectedly, the acpB mutant had a higher LD 50 and a reduced ability to disseminate. During in vitro culture, the acpB single mutant produces capsule and toxin similar to the parent strain. It is likely that acpB regulates the expression of downstream genes that contribute to the virulence of B. anthracis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corynebacterium diphtheriae is the causative agent of cutaneous and pharyngeal diphtheria in humans. While lethality is certainly caused by diphtheria toxin, corynebacterial colonization may primarily require proteinaceous fibers called pili, which mediate adherence to specific tissues. The type strain of C. diphtheriae possesses three distinct pilus structures, namely the SpaA, SpaD, and SpaH-type pili, which are encoded by three distinct pilus gene clusters. The pilus is assembled onto the bacterial peptidoglycan by a specific transpeptidase enzyme called sortase. Although the SpaA pili are shown to be specific for pharyngeal cells in vitro, little is known about functions of the three pili in bacterial pathogenesis. This is mainly due to lack of in vivo models of corynebacterial infection. As an alternative to mouse models as mice do not have functional receptors for diphtheria toxin, in this study I use Caenorhabditis elegans as a model host for C. diphtheriae. A simple C. elegans model would be beneficial in determining the specific role of each pilus-type and the literature suggests that C. elegans infection model can be used to study a variety of bacterial species giving insight into bacterial virulence and host-pathogen interactions. My study examines the hypothesis that pili and toxin are major virulent determinants of C. diphtheriae in the C. elegans model host.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain tumor is one of the most aggressive types of cancer in humans, with an estimated median survival time of 12 months and only 4% of the patients surviving more than 5 years after disease diagnosis. Until recently, brain tumor prognosis has been based only on clinical information such as tumor grade and patient age, but there are reports indicating that molecular profiling of gliomas can reveal subgroups of patients with distinct survival rates. We hypothesize that coupling molecular profiling of brain tumors with clinical information might improve predictions of patient survival time and, consequently, better guide future treatment decisions. In order to evaluate this hypothesis, the general goal of this research is to build models for survival prediction of glioma patients using DNA molecular profiles (U133 Affymetrix gene expression microarrays) along with clinical information. First, a predictive Random Forest model is built for binary outcomes (i.e. short vs. long-term survival) and a small subset of genes whose expression values can be used to predict survival time is selected. Following, a new statistical methodology is developed for predicting time-to-death outcomes using Bayesian ensemble trees. Due to a large heterogeneity observed within prognostic classes obtained by the Random Forest model, prediction can be improved by relating time-to-death with gene expression profile directly. We propose a Bayesian ensemble model for survival prediction which is appropriate for high-dimensional data such as gene expression data. Our approach is based on the ensemble "sum-of-trees" model which is flexible to incorporate additive and interaction effects between genes. We specify a fully Bayesian hierarchical approach and illustrate our methodology for the CPH, Weibull, and AFT survival models. We overcome the lack of conjugacy using a latent variable formulation to model the covariate effects which decreases computation time for model fitting. Also, our proposed models provides a model-free way to select important predictive prognostic markers based on controlling false discovery rates. We compare the performance of our methods with baseline reference survival methods and apply our methodology to an unpublished data set of brain tumor survival times and gene expression data, selecting genes potentially related to the development of the disease under study. A closing discussion compares results obtained by Random Forest and Bayesian ensemble methods under the biological/clinical perspectives and highlights the statistical advantages and disadvantages of the new methodology in the context of DNA microarray data analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although several detailed models of molecular processes essential for circadian oscillations have been developed, their complexity makes intuitive understanding of the oscillation mechanism difficult. The goal of the present study was to reduce a previously developed, detailed model to a minimal representation of the transcriptional regulation essential for circadian rhythmicity in Drosophila. The reduced model contains only two differential equations, each with time delays. A negative feedback loop is included, in which PER protein represses per transcription by binding the dCLOCK transcription factor. A positive feedback loop is also included, in which dCLOCK indirectly enhances its own formation. The model simulated circadian oscillations, light entrainment, and a phase-response curve with qualitative similarities to experiment. Time delays were found to be essential for simulation of circadian oscillations with this model. To examine the robustness of the simplified model to fluctuations in molecule numbers, a stochastic variant was constructed. Robust circadian oscillations and entrainment to light pulses were simulated with fewer than 80 molecules of each gene product present on average. Circadian oscillations persisted when the positive feedback loop was removed. Moreover, elimination of positive feedback did not decrease the robustness of oscillations to stochastic fluctuations or to variations in parameter values. Such reduced models can aid understanding of the oscillation mechanisms in Drosophila and in other organisms in which feedback regulation of transcription may play an important role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyme disease Borrelia can infect humans and animals for months to years, despite the presence of an active host immune response. The vls antigenic variation system, which expresses the surface-exposed lipoprotein VlsE, plays a major role in B. burgdorferi immune evasion. Gene conversion between vls silent cassettes and the vlsE expression site occurs at high frequency during mammalian infection, resulting in sequence variation in the VlsE product. In this study, we examined vlsE sequence variation in B. burgdorferi B31 during mouse infection by analyzing 1,399 clones isolated from bladder, heart, joint, ear, and skin tissues of mice infected for 4 to 365 days. The median number of codon changes increased progressively in C3H/HeN mice from 4 to 28 days post infection, and no clones retained the parental vlsE sequence at 28 days. In contrast, the decrease in the number of clones with the parental vlsE sequence and the increase in the number of sequence changes occurred more gradually in severe combined immunodeficiency (SCID) mice. Clones containing a stop codon were isolated, indicating that continuous expression of full-length VlsE is not required for survival in vivo; also, these clones continued to undergo vlsE recombination. Analysis of clones with apparent single recombination events indicated that recombinations into vlsE are nonselective with regard to the silent cassette utilized, as well as the length and location of the recombination event. Sequence changes as small as one base pair were common. Fifteen percent of recovered vlsE variants contained "template-independent" sequence changes, which clustered in the variable regions of vlsE. We hypothesize that the increased frequency and complexity of vlsE sequence changes observed in clones recovered from immunocompetent mice (as compared with SCID mice) is due to rapid clearance of relatively invariant clones by variable region-specific anti-VlsE antibody responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Once metastasis has occurred, the possibility of completely curing breast cancer is unlikely, particularly for the 30 to 40% of cancers overexpressing the gene for HER2/neu. A vaccine targeting p185, the protein product of the HER2/neu gene, could have therapeutic application by controlling the growth and metastasis of highly aggressive HER2/neu+ cells. The purpose of this study was to determine the effectiveness of two gene vaccines targeting HER2/neu in preventive and therapeutic tumor models. METHODS: The mouse breast cancer cell line A2L2, which expresses the gene for rat HER2/neu and hence p185, was injected into the mammary fat pad of mice as a model of solid tumor growth or was injected intravenously as a model of lung metastasis. SINCP-neu, a plasmid containing Sindbis virus genes and the gene for rat HER2/neu, and Adeno-neu, an E1,E2a-deleted adenovirus also containing the gene for rat HER2/neu, were tested as preventive and therapeutic vaccines. RESULTS: Vaccination with SINCP-neu or Adeno-neu before tumor challenge with A2L2 cells significantly inhibited the growth of the cells injected into the mammary fat or intravenously. Vaccination 2 days after tumor challenge with either vaccine was ineffective in both tumor models. However, therapeutic vaccination in a prime-boost protocol with SINCP-neu followed by Adeno-neu significantly prolonged the overall survival rate of mice injected intravenously with the tumor cells. Naive mice vaccinated using the same prime-boost protocol demonstrated a strong serum immunoglobulin G response and p185-specific cellular immunity, as shown by the results of ELISPOT (enzyme-linked immunospot) analysis for IFNgamma. CONCLUSION: We report herein that vaccination of mice with a plasmid gene vaccine and an adenovirus gene vaccine, each containing the gene for HER2/neu, prevented growth of a HER2/neu-expressing breast cancer cell line injected into the mammary fat pad or intravenously. Sequential administration of the vaccines in a prime-boost protocol was therapeutically effective when tumor cells were injected intravenously before the vaccination. The vaccines induced high levels of both cellular and humoral immunity as determined by in vitro assessment. These findings indicate that clinical evaluation of these vaccines, particularly when used sequentially in a prime-boost protocol, is justified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We recently identified 15 genes encoding putative surface proteins with features of MSCRAMMs and/or pili in the Enterococcus faecium TX0016 (DO) genome, including four predicted pilus-encoding gene clusters; we also demonstrated that one of these, ebpABC(fm), is transcribed as an operon, that its putative major pilus subunit, EbpC(fm) (also called pilB), is polymerized into high molecular weight complexes, and that it is enriched among clinical E. faecium isolates. Here, we created a deletion of the ebpABC(fm) operon in an endocarditis-derived E. faecium strain (TX82) and showed, by a combination of whole-cell ELISA, flow cytometry, immunoblot and immunogold electron microscopy, that this deletion abolished EbpC(fm) expression and eliminated EbpC(fm)-containing pili from the cell surface. However, transcription of the downstream sortase, bps(fm), was not affected. Importantly, the ebpABC(fm) deletion resulted in significantly reduced biofilm formation (p < 0.0001) and initial adherence (p < 0.0001) versus the wild-type; both were restored by complementing ebpABC(fm) in trans, which also restored cell surface expression of EbpC(fm) and pilus production. Furthermore, the deletion mutant was significantly attenuated in two independent mixed infection mouse urinary tract experiments, i.e., outnumbered by the wild-type in kidneys (p = 0.0003 and < 0.0001, respectively) and urinary bladders (p = 0.0003 and = 0.002). In conclusion, we have shown that the ebpABC(fm) locus encodes pili on the E. faecium TX82 cell surface and provide the first evidence that pili of this emerging pathogen are important for its ability to form biofilm and to cause infection in an ascending UTI model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Plasmids containing hylEfm (pHylEfm) were previously shown to increase gastrointestinal colonization and lethality of Enterococcus faecium in experimental peritonitis. The hylEfm gene, predicting a glycosyl hydrolase, has been considered as a virulence determinant of hospital-associated E. faecium, although its direct contribution to virulence has not been investigated. Here, we constructed mutants of the hylEfm-region and we evaluated their effect on virulence using a murine peritonitis model. RESULTS: Five mutants of the hylEfm-region of pHylEfmTX16 from the sequenced endocarditis strain (TX16 [DO]) were obtained using an adaptation of the PheS* system and were evaluated in a commensal strain TX1330RF to which pHylEfmTX16 was transferred by mating; these include i) deletion of hylEfm only; ii) deletion of the gene downstream of hylEfm (down) of unknown function; iii) deletion of hylEfm plus down; iv) deletion of hylEfm-down and two adjacent genes; and v) a 7,534 bp deletion including these four genes plus partial deletion of two others, with replacement by cat. The 7,534 bp deletion did not affect virulence of TX16 in peritonitis but, when pHylEfmTX16Δ7,534 was transferred to the TX1330RF background, the transconjugant was affected in in vitro growth versus TX1330RF(pHylEfmTX16) and was attenuated in virulence; however, neither hylEfm nor hylEfm-down restored wild type function. We did not observe any in vivo effect on virulence of the other deletions of the hylEfm-region CONCLUSIONS: The four genes of the hylEfm region (including hylEfm) do not mediate the increased virulence conferred by pHylEfmTX16 in murine peritonitis. The use of the markerless counterselection system PheS* should facilitate the genetic manipulation of E. faecium in the future.