31 resultados para gene integration and expression

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the differentiated skeletal muscle phenotype is a process that appears to occur in at least two stages. First, pluripotent stem cells become committed to the myogenic lineage. Although undifferentiated and capable of continued proliferation, determined myoblasts are restricted to a single developmental fate. Upon receiving the appropriate environmental signals, these determined myoblasts withdraw from the cell cycle, fuse to form multi-nucleated myotubes, and begin to express a battery of muscle-specific gene products that make up the functional and contractile apparatus of the muscle. This project is aimed at the identification and characterization of factors that control the determination and differentiation of myogenic cells. We have cloned a cDNA, called myogenin, that plays an important role in these processes. Myogenin is expressed exclusively in skeletal muscle in vivo and myogenic cell lines in vitro. Its expression is sharply upregulated during differentiation. When constitutively expressed in fibroblasts, myogenin converts these cells to the myogenic lineage. Transfected cells behave as myogenic tissue culture cells with respect to the genes they express, the way they respond to environmental cues, and are capable of fusing to form multinucleated myotubes. Sequence analysis showed that this cDNA has homology to a family of transcription factors in a region of 72 amino acids known as the basic helix-loop-helix motif. This domain appears to mediate binding to a DNA sequence element known as an E-box (CANNTG) essential for the activity of the enhancers of many muscle-specific genes.^ Analysis of myogenin in tissue culture cells showed that its expression is responsive to many of the environmental cues, such as the presence of growth factors and oncogenes, that modulate myogenesis. In an attempt to identify the cis- and trans-elements that control myogenin expression and thereby understand what factors are responsible for the establishment of the myogenic lineage, we have cloned the myogenin gene. After analysis of the gene structure, we constructed a series of reporter constructs from the 5$\prime$ upstream sequence of the myogenin gene to determine which cis-acting sequences might be important in myogenin regulation. We found that 184 nucleotides of the 5$\prime$ sequence was sufficient to direct high-level muscle-specific expression of the reporter gene. Two sequence elements present in the 184 fragment, an E-box and a MEF-2 site, have been shown previously to be important in muscle-specific transcription. Mutagenesis of these sites revealed that both sites are necessary for full activity of the myogenin promoter, and suggests that a complex hierarchy of transcription factors control myogenic differentiation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell differentiation are associated with activation of cell lineage-specific genes. The $LpS{\it 1}\beta$ gene of Lytechinus pictus is activated at the late cleavage stage. $LpS{\it 1}\beta$ transcripts accumulate exclusively in aboral ectoderm lineages. Previous studies demonstrated two G-string DNA-elements, proximal and distal G-strings, which bind to an ectoderm-enriched nuclear factor. In order to define the cis-elements which control positive expression of the $LpS{\it 1}\beta$ gene, the regulatory region from $-$108 to +17 bp of the $LpS{\it 1}\beta$ gene promoter was characterized. The ectoderm G-string factor binds to a G/C-rich region larger than the G-string itself and the binding of the G-string factor requires sequences immediately downstream from the G-string. These downstream sequences are essential for full promoter activity. In addition, only 108 bp of $LpS{\it 1}\beta\ 5\sp\prime$ flanking DNA drives $LpS{\it 1}\beta$ gene expression in aboral ectoderm/mesenchyme cells. Therefore, for positive control of $LpS{\it 1}\beta$ gene expression, two regions of 5$\sp\prime$ flanking DNA are required: region I from base pairs $-$762 to $-$511, and region II, which includes the G/C-rich element, from base pairs $-$108 to $-$61. A mesenchyme cell repressor element is located within region I.^ DNA-binding proteins play key roles in determination of cell differentiation. The zinc finger domain is a DNA-binding domain present in many transcription factors. Based on homologies in zinc fingers, a zinc finger-encoding gene, SpKrox-1, was cloned from S. purpuratus. The putative SpKrox-1 protein has all structural characteristics of a transcription factor: four zinc fingers for DNA binding; acidic domain for transactivation; basic domain for nuclear targeting; and leucine zipper for dimerization. SpKrox-1 RNA transcripts showed a transient expression pattern which correlates largely with early embryonic development. The spatial expression of SpKrox-1 mRNA was distributed throughout the gastrula and larva ectodermal wall. However, SpKrox-1 was not expressed in pigment cells. The SpKrox-1 gene is thus a marker of a subset of SMCs or ectoderm cells. The structural features, and the transient temporal and restricted spatial expression patterns suggest that SpKrox-1 plays a role in a specific developmental event. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The plasma membrane xc- cystine/glutamate transporter mediates cellular uptake of cystine in exchange for intracellular glutamate and is highly expressed by pancreatic cancer cells. The xCT gene, encoding the cystine-specific xCT protein subunit of xc-, is important in regulating intracellular glutathione (GSH) levels, critical for cancer cell protection against oxidative stress, tumor growth and resistance to chemotherapeutic agents including platinum. We examined 4 single nucleotide polymorphisms (SNPs) of the xCT gene in 269 advanced pancreatic cancer patients who received first line gemcitabine with or without cisplatin or oxaliplatin. Genotyping was performed using Taqman real-time PCR assays. A statistically significant correlation was noted between the 3' untranslated region (UTR) xCT SNP rs7674870 and overall survival (OS): Median survival time (MST) was 10.9 and 13.6 months, respectively, for the TT and TC/CC genotypes (p = 0.027). Stratified analysis showed the genotype effect was significant in patients receiving gemcitabine in combination with platinum therapy (n = 145): MST was 10.5 versus 14.1 months for the TT and TC/CC genotypes, respectively (p = 0.013). The 3' UTR xCT SNP rs7674870 may correlate with OS in pancreatic cancer patients receiving gemcitabine and platinum combination therapy. Paraffin-embedded core and surgical biopsy tumor specimens from 98 patients with metastatic pancreatic adenocarcinoma were analyzed by immunohistochemistry using an xCT specific antibody. xCT protein IHC expression scores were analyzed in relation to overall survival in 86 patients and genotype in 12 patients and no statistically significant association was found between the level of xCT IHC expression score and overall survival (p = 0.514). When xCT expression was analyzed in terms of treatment response, no statistically significant associations could be determined (p = 0.908). These data suggest that polymorphic variants of xCT may have predictive value, and that the xc- transporter may represent an important target for therapy in pancreatic cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor receptor p75/80 ((TNF-R p75/80) is a 75 kDa type 1 transmembrane protein expressed predominately on cells of hematopoietic lineage. TNF-R p75/80 belongs to the TNF receptor superfamily characterized by cysteine-rich extracellular regions composed of three to six disulfide-linked domains. In the present report, we have characterized, for the first time, the complete gene structure for human TNF-R p75/80 which spans approximately 43 kbp. The gene consists of 10 exons (ranging from 34 bp to 2.5 kbp) and 9 introns (343 bp to 19 kbp). Consensus elements for transcription factors involved in T cell development and activation were noted in the 5$\sp\prime$ flanking region including TCF-1, Ikaros, AP-1, CK-2, IL-6RE, ISRE, GAS, NF-$\kappa$B and SP1, as well as an unusually high GC content and CpG frequency that appears characteristic of some TNF-R family members. The unusual (GATA)$\sb{\rm n}$ and (GAA)(GGA) repeats found within intron 1 may prove useful for further genome analysis within the 1p36 chromosomal locus. The human TNF-R p75/80 gene structure will permit further assessment of its involvement in normal hematopoietic cell development and function, autoimmune disease, and non-random translocations in hematopoietic malignancies. The region 1.8 kb 5$\sp\prime$ of the ATG was able to drive luciferase expression when transfected into cell lines expressing TNF-R p75/80. Further characterization of the 5$\sp\prime$-regulatory region will aid in determining factors and signal transduction pathways involved in regulating TNF-R p75/80 expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic analysis is a powerful method for analyzing the function of specific genes in development. I sought to identify novel genes in the mouse using a genetic analysis relying on the expression pattern and phenotype of mutated genes. To this end, I have conducted a gene trap screen using the vector $\rm SA\beta geo,$ a promoterless DNA construct that encodes a fusion protein with lacZ and neomycin resistance activities. Productive integration and expression of the $\beta$geo protein in embryonic stem (ES) cells requires integration into an active transcription unit. The endogenous regulatory elements direct reporter gene expression which reflects the expression of the endogenous gene. Of eight mouse lines generated from gene trap ES cell clones, four showed differential regulation of $\beta$geo activity during embryogenesis. These four were analyzed in more detail.^ Three of the lines RNA 1, RNA2 and RNA 3 had similar expression patterns, within subsets of cells in sites of embryonic hematopoiesis. Cloning of the trapped genes revealed that all three integrations had occurred within 45S rRNA precursor transcription units. These results imply that there exists in these cells some mechanism responsible for the efficient production of the $\beta$geo protein from an RNA polymerase I transcript that is not present in most of the cells in the embryo.^ The fourth line, GT-2, showed widespread, dynamic expression. Many of the sites of expression were important classic embryonic induction systems. Cloning of the sequences fused to the $5\sp\prime$ end of the $\beta$geo sequence revealed that the trapped gene contained significant sequence homology with a previously identified human sequence HumORF5. An open reading frame of this sequence is homologous to a group of eukaryotic proteins that are members of the RNA helicase superfamily I.^ Analysis of the gene trap lines suggests that potentially novel developmental mechanisms have been uncovered. In the case of RNA 1, 2 and 3, the differential production of ribosomal RNAs may be required for differentiation or function of the $\beta$geo positive hematopoietic cells. In the GT-2 line, a previously unsuspected temporal and spatial regulation of a putative RNA helicase implies a role for this activity during specific aspects of mouse development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 4F subfamily comprises a group of enzymes that metabolize derivatives of arachidonic acid such as prostaglandins, lipoxins leukotrienes and hydroxyeicosatetraenoic acids, which are important mediators involved in the inflammatory response. Therefore, we speculate that CYP4Fs might be able to modulate the extent of the inflammation by controlling of the tissue levels of these inflammatory mediators, especially, leukotriene B4. One way to provide support for this hypothesis is to test whether the expression of CYP4Fs changes under inflammatory conditions, since these changes are required to adjust the levels of inflammatory mediators. ^ A lipopolysacchride (LPS) induced rat inflammation model was used to analyze the expressions of rat CYP4F4 and CYP4F5 in liver and kidney. LPS administration did not change the constitutive expression level of CYP4F4 and CYP4F5. In liver, the expressions of CYP4F4 and CYP4F5 decreased to 50–60% of the untreated level. The same effect of LPS on CYP4F4 and CYP4F5 expression can be mimicked in hepatocyte primary cultures treated with LPS, indicating a direct of effect of LPS on hepatocytes. LPS treatment also decreased the activity of liver microsomes towards chlorpromazine, however, antibody inhibition study revealed that liver CYP4Fs are not the only players in metabolizing chlorpromazine. To study further the underlying mechanism, CYP4F5 gene was isolated, characterized, and the promoter region was defined. ^ Accumulating evidence showed that peroxisome proliferator-activated receptors (PPARs) play an active role in inflammation. To investigate the possible role of PPARα in regulating CYP4F expression by inflammation or by clofibrate treatment, the expressions of two new mouse 4F isoforms were analyzed in PPARα knockout mice upon LPS or clofibrate challenge. A novel induction of CYP4F15 by LPS and clofibrate was observed in kidney, and this effect is totally dependent on the presence of PPARα. Renal CYP4F16 expression was not affected by LPS or clofibrate in both (+/+) and (−/−) mice. In contrast, hepatic expressions of CYP4F15 and CYP4F16 were reduced significantly in (+/+) mice, but much less in (−/−) mice, suggesting that PPARα is partially responsible for this down-regulation. Clofibrate treatment reduced the expression of CYP4F16 in liver, but has no effect on CYP4F15 and PPARα does not have a role in hepatic CYP4F expression regulated by clofibrate. In general, CYP4Fs are regulated in an isoform-, tissue- and species-specific manner. ^ A human CYP4F isoform, CYP4F11, was isolated. The genomic structure was also solved by using database mining and bioinformatics tools. Localization of CYP4F11 to chromosome 19, 16 kb upstream of CYP4F2, suggests that human CYP4F genes may form a cluster on chromosome 19. This novel human 4F is highly expressed in liver, as well as in kidney, heart and skeletal muscle. Further study of the activity and gene regulation on CYP4F11 will provide us more insights into the physiological functions of CYP4F subfamily. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carboxypeptidase N (CPN) is a plasma zinc metalloprotease, which consists of two enzymatically active small subunits and two large subunits that protect the protein from degradation. CPN cleaves carboxy-terminal arginines and lysines from peptides found in the bloodstream such as complement anaphylatoxins, kinins, and creatine kinase MM. In this study, the mouse CPN small subunit (CPN1) coding region, gene structure, and chromosomal location were characterized and the expression of CPN1 was investigated in mouse embryos at different stages of development. The CPN1 gene, which was approximately 29 kb in length, contained nine exons and localized to mouse chromosome 19D2. The fifth and sixth exons of CPN1 encoded the amino acids necessary for substrate binding and catalytic activity. CPN1 RNA was expressed predominately in adult liver and contained a 1371 bp open reading frame encoding 457 amino acids. In the mouse embryo, CPN1 RNA was observed at 8.5 days post coitus (dpc), while its protein was detected at 10.5 dpc. In situ hybridization of the fetal liver detected CPN1 RNA in erythroid progenitor cells at 10.5, 13.5, and 16.5 dpc and in hepatocytes at 16.5 dpc. This was compared to the expression of the complement component C3, the parent molecule of complement anaphylatoxin C3a. Consistently throughout the experiments, CPN1 message and protein preceded the expression of C3. To obtain a better understanding of the biological significance of CPN1 in vivo, studies were initiated to produce a genetically engineered mouse in which the CPN1 gene was ablated. To facilitate this project a targeting vector was constructed by removing the functionally important fifth and sixth exons of the CPN1 gene. Collectively, these studies have: (1) provided important detailed information regarding the structure and organization of the murine CPN1 gene, (2) yielded insights into the developmental expression of mouse CPN1 in relationship to C3 expression, and (3) set the stage for the generation of a CPN1 “knock-out” mouse, which can be used to determine the biological significance of CPN1 in both normal and diseased conditions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of water-soluble C60 transfecting agents has been prepared using Hirsch-Bingel chemistry and assessed for their ability to act as gene-delivery vectors in vitro. In an effort to elucidate the relationship between the hydrophobicity of the fullerene core, the hydrophilicity of the water-solubilizing groups, and the overall charge state of the C60 vectors in gene delivery and expression, several different C60 derivatives were synthesized to yield either positively charged, negatively charged, or neutral chemical functionalities under physiological conditions. These fullerene derivatives were then tested for their ability to transfect cells grown in culture with DNA carrying the green fluorescent protein (GFP) reporter gene. Statistically significant expression of GFP was observed for all forms of the C60 derivatives when used as DNA vectors and compared to the ability of naked DNA alone to transfect cells. However, efficient in vitro transfection was only achieved with the two positively charged C60 derivatives, namely, an octa-amino derivatized C60 and a dodeca-amino derivatized C60 vector. All C60 vectors showed an increase in toxicity in a dose-dependent manner. Increased levels of cellular toxicity were observed for positively charged C60 vectors relative to the negatively charged and neutral vectors. Structural analyses using dynamic light scattering and optical microscopy offered further insights into possible correlations between the various derivatized C60 compounds, the C60 vector/DNA complexes, their physical attributes (aggregation, charge) and their transfection efficiencies. Recently, similar Gd@C60-based compounds have demonstrated potential as advanced contrast agents for magnetic resonance imaging (MRI). Thus, the successful demonstration of intracellular DNA uptake, intracellular transport, and gene expression from DNA using C60 vectors suggests the possibility of developing analogous Gd@C60-based vectors to serve simultaneously as both therapeutic and diagnostic agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously identified a gene cluster, epa (for enterocococcal polysaccharide antigen), involved in polysaccharide biosynthesis of Enterococcus faecalis and showed that disruption of epaB and epaE resulted in attenuation in translocation, biofilm formation, resistance to polymorphonuclear leukocyte (PMN) killing, and virulence in a mouse peritonitis model. Using five additional mutant disruptions in the 26-kb region between orfde2 and OG1RF_0163, we defined the epa locus as the area from epaA to epaR. Disruption of epaA, epaM, and epaN, like prior disruption of epaB and epaE, resulted in alteration in Epa polysaccharide content, more round cells versus oval cells with OG1RF, decreased biofilm formation, attenuation in a mouse peritonitis model, and resistance to lysis by the phage NPV-1 (known to lyse OG1RF), while mutants disrupted in orfde2 and OG1RF_163 (the epa locus flanking genes) behaved like OG1RF in those assays. Analysis of the purified Epa polysaccharide from OG1RF revealed the presence of rhamnose, glucose, galactose, GalNAc, and GlcNAc in this polysaccharide, while carbohydrate preparation from the epaB mutant did not contain rhamnose, suggesting that one or more of the glycosyl transferases encoded by the epaBCD operon are necessary to transfer rhamnose to the polysaccharide. In conclusion, the epa genes, uniformly present in E. faecalis strains and involved in biosynthesis of polysaccharide in OG1RF, are also important for OG1RF shape determination, biofilm formation, and NPV-1 replication/lysis, as well as for E. faecalis virulence in a mouse peritonitis model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies in our laboratory have indicated that heparan sulfate proteoglycans (HSPGs) play an important role in murine embryo implantation. To investigate the potential function of HSPGs in human implantation, two human cell lines (RL95 and JAR) were selected to model uterine epithelium and embryonal trophectoderm, respectively. A heterologous cell-cell adhesion assay showed that initial binding between JAR and RL95 cells is mediated by cell surface glycosaminoglycans (GAG) with heparin-like properties, i.e., heparan sulfate and dermatan sulfate. Furthermore, a single class of highly specific, protease-sensitive heparin/heparan sulfate binding sites exist on the surface of RL95 cells. Three heparin binding, tryptic peptide fragments were isolated from RL95 cell surfaces and their amino termini partially sequenced. Reverse transcription-polymerase chain reaction (RT-PCR) generated 1 to 4 PCR products per tryptic peptide. Northern blot analysis of RNA from RL95 cells using one of these RT-PCR products identified a 1.2 Kb mRNA species (p24). The amino acid sequence predicted from the cDNA sequence contains a putative heparin-binding domain. A synthetic peptide representing this putative heparin binding domain was used to generate a rabbit polyclonal antibody (anti-p24). Indirect immunofluorescence studies on RL95 and JAR cells as well as binding studies of anti-p24 to intact RL95 cells demonstrate that p24 is distributed on the cell surface. Western blots of RL95 membrane preparations identify a 24 kDa protein (p24) highly enriched in the 100,000 g pellet plasma membrane-enriched fraction. p24 eluted from membranes with 0.8 M NaCl, but not 0.6 M NaCl, suggesting that it is a peripheral membrane component. Solubilized p24 binds heparin by heparin affinity chromatography and $\sp{125}$I-heparin binding assays. Furthermore, indirect immunofluorescence studies indicate that cytotrophoblast of floating and attached villi of the human fetal-maternal interface are recognized by anti-p24. The study also indicates that the HSPG, perlecan, accumulates where chorionic villi are attached to uterine stroma and where p24-expressing cytotrophoblast penetrate the stroma. Collectively, these data indicate that p24 is a cell surface membrane-associated heparin/heparan sulfate binding protein found in cytotrophoblast, but not many other cell types of the fetal-maternal interface. Furthermore, p24 colocalizes with HSPGs in regions of cytotrophoblast invasion. These observations are consistent with a role for HSPGs and HSPG binding proteins in human trophoblast-uterine cell interactions. ^