2 resultados para fast sample preparation method

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectrophoresis (DEP) has been used to manipulate cells in low-conductivity suspending media using AC electrical fields generated on micro-fabricated electrode arrays. This has created the possibility of performing automatically on a micro-scale more sophisticated cell processing than that currently requiring substantial laboratory equipment, reagent volumes, time, and human intervention. In this research the manipulation of aqueous droplets in an immiscible, low-permittivity suspending medium is described to complement previous work on dielectrophoretic cell manipulation. Such droplets can be used as carriers not only for air- and water-borne samples, contaminants, chemical reagents, viral and gene products, and cells, but also the reagents to process and characterize these samples. A long-term goal of this area of research is to perform chemical and biological assays on automated, micro-scaled devices at or near the point-of-care, which will increase the availability of modern medicine to people who do not have ready access to large medical institutions and decrease the cost and delays associated with that lack of access. In this research I present proofs-of-concept for droplet manipulation and droplet-based biochemical analysis using dielectrophoresis as the motive force. Proofs-of-concept developed for the first time in this research include: (1) showing droplet movement on a two-dimensional array of electrodes, (2) achieving controlled dielectric droplet injection, (3) fusing and reacting droplets, and (4) demonstrating a protein fluorescence assay using micro-droplets. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SNP genotyping arrays have been developed to characterize single-nucleotide polymorphisms (SNPs) and DNA copy number variations (CNVs). The quality of the inferences about copy number can be affected by many factors including batch effects, DNA sample preparation, signal processing, and analytical approach. Nonparametric and model-based statistical algorithms have been developed to detect CNVs from SNP genotyping data. However, these algorithms lack specificity to detect small CNVs due to the high false positive rate when calling CNVs based on the intensity values. Association tests based on detected CNVs therefore lack power even if the CNVs affecting disease risk are common. In this research, by combining an existing Hidden Markov Model (HMM) and the logistic regression model, a new genome-wide logistic regression algorithm was developed to detect CNV associations with diseases. We showed that the new algorithm is more sensitive and can be more powerful in detecting CNV associations with diseases than an existing popular algorithm, especially when the CNV association signal is weak and a limited number of SNPs are located in the CNV.^