Dielectrophoretic approaches to sample preparation and analysis


Autoria(s): Schwartz, Jon Alexander
Data(s)

01/01/2001

Resumo

Dielectrophoresis (DEP) has been used to manipulate cells in low-conductivity suspending media using AC electrical fields generated on micro-fabricated electrode arrays. This has created the possibility of performing automatically on a micro-scale more sophisticated cell processing than that currently requiring substantial laboratory equipment, reagent volumes, time, and human intervention. In this research the manipulation of aqueous droplets in an immiscible, low-permittivity suspending medium is described to complement previous work on dielectrophoretic cell manipulation. Such droplets can be used as carriers not only for air- and water-borne samples, contaminants, chemical reagents, viral and gene products, and cells, but also the reagents to process and characterize these samples. A long-term goal of this area of research is to perform chemical and biological assays on automated, micro-scaled devices at or near the point-of-care, which will increase the availability of modern medicine to people who do not have ready access to large medical institutions and decrease the cost and delays associated with that lack of access. In this research I present proofs-of-concept for droplet manipulation and droplet-based biochemical analysis using dielectrophoresis as the motive force. Proofs-of-concept developed for the first time in this research include: (1) showing droplet movement on a two-dimensional array of electrodes, (2) achieving controlled dielectric droplet injection, (3) fusing and reacting droplets, and (4) demonstrating a protein fluorescence assay using micro-droplets. ^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI3070959

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Chemistry, Biochemistry|Biophysics, Medical|Biophysics, General
Tipo

text