4 resultados para creative drive
em DigitalCommons@The Texas Medical Center
Resumo:
Transmembrane domain orientation within some membrane proteins is dependent on membrane lipid composition. Initial orientation occurs within the translocon, but final orientation is determined after membrane insertion by interactions within the protein and between lipid headgroups and protein extramembrane domains. Positively and negatively charged amino acids in extramembrane domains represent cytoplasmic retention and membrane translocation forces, respectively, which are determinants of protein orientation. Lipids with no net charge dampen the translocation potential of negative residues working in opposition to cytoplasmic retention of positive residues, thus allowing the functional presence of negative residues in cytoplasmic domains without affecting protein topology.
Resumo:
InGen of Creative Production in the Health Sciences is a compendium of innovative thinking exercises for individuals and groups, derived from an eclectic array of practical guides for professionals in a variety of fields. Segmented into five subcategories across twenty two chapters, the effort seeks to make techniques for increasing innovative problem solving more accessible to a diverse audience of problem solvers. The chapters of Roberta Ness. Innovation Generation (2012, Oxford University Press) provide the themes for each of the chapters in the workbook. It is intended that those who read Ness. Innovation Generation will benefit from practicing the constructs of innovative thinking exemplified in each exercise.^ The methods used to gather data, in this case mostly innovative thinking exercises, included literature reviews of existing innovative thinking tools, classroom materials, and theory-driven exploration of exercises to fill in gaps in extant materials. Specifically, Google.com and Amazon.com searches were conducted using the terms “innovation,” “innovative,” “innovator,” “creative,” “novelty,” “thinking,” together with some variance of “book,” “workbook,” and “exercise.” The results were sorted thematically to show correspondence with the themes in Ness (2012) and compared to suggested best practices of 50 years of scientific research on innovative thinking. Where themes were suggested by Ness (2012) and peer-reviewed research on innovation but unavailable in published innovation thinking workbooks, new exercises were developed. The five type subcategories into which these results were organized are: individual direct, individual indirect, group direct, group indirect and probing question. It is anticipated that the five type subcategories and spectrum of themes will equip problem solvers in a variety of capacities.^
Resumo:
As an interface between the circulatory and central nervous systems, the neurovascular unit is vital to the development and survival of tumors. The malignant brain cancer glioblastoma multiforme (GBM) displays invasive growth behaviors that are major impediments to surgical resection and targeted therapies. Adhesion and signaling pathways that drive GBM cell invasion remain largely uncharacterized. Here we have utilized human GBM cell lines, primary patient samples, and pre-clinical mouse models to demonstrate that integrin αvβ8 is a major driver of GBM cell invasion. β8 integrin is overexpressed in many human GBM cells, with higher integrin expression correlating with increased invasion and diminished patient survival. Silencing β8 integrin in human GBM cells leads to impaired tumor cell invasion due to hyperactivation of the Rho GTPases Rac1 and Cdc42. β8 integrin associates with Rho GDP Dissociation Inhibitor 1 (RhoGDI1), an intracellular signaling effector that sequesters Rho GTPases in their inactive GDP-bound states. Silencing RhoGDI1 expression or uncoupling αvβ8 integrin-RhoGDI1 protein interactions blocks GBM cell invasion due to Rho GTPase hyperactivation. These data reveal for the first time that αvβ8 integrin, via interactions with RhoGDI1, suppresses activation of Rho proteins to promote GBM cell invasiveness. Hence, targeting the αvβ8 integrin-RhoGDI1 signaling axis may be an effective strategy for blocking GBM cell invasion.