2 resultados para citrate potassium

em DigitalCommons@The Texas Medical Center


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensitization is a simple form of learning which refers to an enhancement of a behavioral response resulting from an exposure to a novel stimulus. While sensitization is found throughout the animal world, little is known regarding the underlying neural mechanisms. By taking advantage of the simple nervous system of the marine mollusc Aplysia, I have begun to examine the cellular and molecular mechanisms underlying this simple form of learning. In an attempt to determine the generality of the mechanisms of neuromodulation underlying sensitization, I have investigated and compared the modulation of neurons involved in two defensive behaviors in Aplysia, the defensive inking response and defensive tail withdrawal.^ The motor neurons that produce the defensive release of ink receive a slow decreased conductance excitatory postsynaptic potential (EPSP) in response to sensitizing stimuli. Using electrophysiological techniques, it was found that serotonin (5-HT) mimicked the physiologically produced slow EPSP. 5-HT produced its response through a reduction in a voltage-independent conductance to K('+). The 5-HT sensitive K('+) conductance of the ink motor neurons was separate from the fast K('+), delayed K('+), and Ca('2+)-activated K('+) conductances found in these and other molluscan neurons. 5-HT was shown to produce a decrease in K('+) conductance in the ink motor neurons through an elevation of cellular cAMP.^ The mechanosensory neurons that participate in the defensive tail withdrawal response are also modulated by sensitizing stimuli through the action of 5-HT. Using electrophysiological techniques, it was found that 5-HT modulated the tail sensory neurons through a reduction in a voltage-dependent conductance to K('+). The serotonin-sensitive K('+) conductance was found to be largely a Ca('2+)-activated K('+) conductance. Much like the ink motor neurons, 5-HT produced its modulation through an elevation of cellular cAMP. While the actual K('+) conductance modulated by 5-HT in these two classes of neurons differs, the following generalizations can be made: (1) the effects of sensitizing stimuli are mimicked by 5-HT, (2) 5-HT produces its effect through an elevation of cellular cAMP, and (3) the conductance to K('+) is modulated by 5-HT. ^