5 resultados para blended learning methods

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Emergency care providers are required to demonstrate competency in the management of life-threatening situation. The care provider’s ability to manage an emergency situation depends upon his/her knowledge and skills in basic CPR; and the use of emergency equipment and supplies. The education department at our healthcare facility is responsible for CPR/Emergency Management competency validation of over 2500 employees annually. Historically each employee was scheduled to attend 4 hours of class every year to review the content, complete the post-test and demonstrate skills. It was resource-intensive, time consuming, stressful and often difficult to schedule the 24/7 employees for the sessions. [See PDF for complete abstract]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: As scholars who prepare future school leaders to be innovative instructional leaders for their learning communities, we are on the verge of a curriculum design revolution. The application of brain research findings promotes educational reform efforts to systemically change the way in which children experience school. However, most educators, school leaders, board members, and policy makers are ill prepared to reconsider the implications for assessment, pedagogy, school climate, daily schedules, and use of technology. This qualitative study asked future school leaders to reconsider how school leadership preparedness programs prepared them to become instructional leaders for the 21st century. The findings from this study will enhance the field of school leadership, challenging the current emphasis placed on standardized testing, traditional school calendars, assessments, monocultural instructional methods, and meeting the needs of diverse learning communities. [See PDF for complete abstract]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this online course is to ensure new nursing graduate students know how to use computer technologies required to complete academic and research activities. Powerful computers, high speed internet, digitalized resources and databases are widely available in educational institutes. New renovation and updates are being released at faster pace than ever. All these developments are necessary for a student to utilize computer programs and synthesize large amount of data in a limited time for any given academic research project. [See PDF for complete abstract]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Robotic-assisted laparoscopic surgery (RALS) is evolving as an important surgical approach in the field of colorectal surgery. We aimed to evaluate the learning curve for RALS procedures involving resections of the rectum and rectosigmoid. METHODS: A series of 50 consecutive RALS procedures were performed between August 2008 and September 2009. Data were entered into a retrospective database and later abstracted for analysis. The surgical procedures included abdominoperineal resection (APR), anterior rectosigmoidectomy (AR), low anterior resection (LAR), and rectopexy (RP). Demographic data and intraoperative parameters including docking time (DT), surgeon console time (SCT), and total operative time (OT) were analyzed. The learning curve was evaluated using the cumulative sum (CUSUM) method. RESULTS: The procedures performed for 50 patients (54% male) included 25 AR (50%), 15 LAR (30%), 6 APR (12%), and 4 RP (8%). The mean age of the patients was 54.4 years, the mean BMI was 27.8 kg/m(2), and the median American Society of Anesthesiologists (ASA) classification was 2. The series had a mean DT of 14 min, a mean SCT of 115.1 min, and a mean OT of 246.1 min. The DT and SCT accounted for 6.3% and 46.8% of the OT, respectively. The SCT learning curve was analyzed. The CUSUM(SCT) learning curve was best modeled as a parabola, with equation CUSUM(SCT) in minutes equal to 0.73 × case number(2) - 31.54 × case number - 107.72 (R = 0.93). The learning curve consisted of three unique phases: phase 1 (the initial 15 cases), phase 2 (the middle 10 cases), and phase 3 (the subsequent cases). Phase 1 represented the initial learning curve, which spanned 15 cases. The phase 2 plateau represented increased competence with the robotic technology. Phase 3 was achieved after 25 cases and represented the mastery phase in which more challenging cases were managed. CONCLUSIONS: The three phases identified with CUSUM analysis of surgeon console time represented characteristic stages of the learning curve for robotic colorectal procedures. The data suggest that the learning phase was achieved after 15 to 25 cases.