5 resultados para Team learning approach in education
em DigitalCommons@The Texas Medical Center
Resumo:
Background: The use of podcasts has emerged as an important tool for use in education. This is especially relevant in nursing schools with the shortage of nursing faculty. The use of podcasts allows the instructor to provide lectures and other course content to students. [See PDF for complete abstract]
Resumo:
Considering the broader context of school reform that is seeking education strategies that might deliver substantial impact, this article examines four questions related to the policy and practice of expanding learning time: (a) why do educators find the standard American school calendar insufficient to meet students’ educational needs, especially those of disadvantaged students? (b) how do educators implement a longer day and/or year, addressing concerns about both educational quality and costs? (c) what does research report about outcomes of expanding time in schools? and (d) what are the future prospects for increasing the number of expanded-time schools? The paper examines these questions by considering research, policy, and practice at the national level and, throughout, by drawing upon additional evidence from Massachusetts, one of the leading states in the expanded-time movement. In considering the latter two questions, the article explores the knowns and unknowns related to expanded learning time and offers suggestions for further research.
Resumo:
As co-founder of KIPP, I know from experience and research that more time in school works. A well-designed extended-time program can help underserved students catch up academically, and prepare them for the rigors of higher education. Implementing extended time more widely poses challenges, but there are also creative solutions to these challenges.
Resumo:
Objective. To determine whether the use of a triage team would reduce the average time-in-department in a pediatric emergency department by 25%.^ Methods. A triage team consisting of a physician, a nurse, and a nurse's assistant initiated work-ups and saw patients who required minimal lab work-up and were likely to be discharged. Study days were randomized. Our inclusion criteria were all children seen in the emergency center between 6p and 2a Monday-Friday. Our exclusion criteria included resuscitations, inpatient-inpatient transfers, left without being seen, leaving against medical advice, any child seen outside of 6p-2am Monday-Friday and on the weekends. A Pearson-Chi square was used for comparison of the two groups for heterogeneity. For the time-in-department analysis, we performed a 2 sided t-test with a set alpha of 0.05 using Mann Whitney U looking for differences in time-in-department based on acuity level, disposition, and acuity level stratified by disposition. ^ Results. Among urgent and non-urgent patients, we found a statistically significant decrease in time-in-department in a pediatric emergency department. Urgent patients had a time-in-department that was 51 minutes shorter than patients seen on non-triage team days (p=0.007), which represents a 14% decrease in time-in-department. Non-urgent patients seen on triage team days had a time-in-department that was 24 minutes shorter than non-urgent patients seen on non-triage team days (p=0.009). From the disposition perspective, discharged patients seen on triage team days had a shorter time-in-department of 28 minutes as compared to those seen on non-triage team days (p=0.012). ^ Conclusion. Overall, there was a trend towards decreased time-in-department of 19 minutes (5.9% decrease) during triage team times. There was a statistically significant decrease in the time-in-department among urgent patients of 51 minutes (13.9% decrease) and among discharged patients of 28 minutes (8.4% decrease). Urgent care patients make up nearly a quarter of the emergency patient population and decreasing their time-in-department would likely make a significant impact on overall emergency flow.^
Resumo:
MAX dimerization protein 1 (MAD1) is a basic-helix-loop-helix transcription factors that recruits transcription repressor such as HDAC to suppress target genes transcription. It antagonizes to MYC because the promoter binding sites for MYC are usually also serve as the binding sites for MAD1 so they compete for it. However, the mechanism of the switch between MYC and MAD1 in turning on and off of genes' transcription is obscure. In this study, we demonstrated that AKT-mediated MAD1 phosphorylation inhibits MAD1 transcription repression function. The association between MAD1 and its target genes' promoter is reduced after been phosphorylated by AKT; therefore, consequently, allows MYC to occupy the binding site and activates transcription. Mutation of such phosphorylation site abrogates the inhibition from AKT. In addition, functional assays demonstrated that AKT suppressed MAD1-mediated transcription repression of its target genes hTERT and ODC. Cell cycle and cell growth were also been released from inhibition by MAD1 in the presents of AKT. Taken together, our study suggests that MAD1 is a novel substrate of AKT and AKT-mediated MAD1 phosphorylation inhibits MAD1function; therefore, activates MAD1 target genes expression. ^ Furthermore, analysis of protein-protein interaction is indispensable for current molecular biology research, but multiplex protein dynamics in cells is too complicated to be analyzed by using existing biochemical methods. To overcome the disadvantage, we have developed a single molecule level detection system with nanofluidic chip. Single molecule was analyzed based on their fluorescent profile and their profiles were plotted into 2 dimensional time co-incident photon burst diagram (2DTP). From this 2DTP, protein complexes were characterized. These results demonstrate that the nanochannel protein detection system is a promising tool for future molecular biology. ^