8 resultados para Structure-based model

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vesicular stomatitis virus (VSV) is a bullet-shaped rhabdovirus and a model system of negative-strand RNA viruses. Through direct visualization by means of cryo-electron microscopy, we show that each virion contains two nested, left-handed helices: an outer helix of matrix protein M and an inner helix of nucleoprotein N and RNA. M has a hub domain with four contact sites that link to neighboring M and N subunits, providing rigidity by clamping adjacent turns of the nucleocapsid. Side-by-side interactions between neighboring N subunits are critical for the nucleocapsid to form a bullet shape, and structure-based mutagenesis results support this description. Together, our data suggest a mechanism of VSV assembly in which the nucleocapsid spirals from the tip to become the helical trunk, both subsequently framed and rigidified by the M layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The induction of late long-term potentiation (L-LTP) involves complex interactions among second-messenger cascades. To gain insights into these interactions, a mathematical model was developed for L-LTP induction in the CA1 region of the hippocampus. The differential equation-based model represents actions of protein kinase A (PKA), MAP kinase (MAPK), and CaM kinase II (CAMKII) in the vicinity of the synapse, and activation of transcription by CaM kinase IV (CAMKIV) and MAPK. L-LTP is represented by increases in a synaptic weight. Simulations suggest that steep, supralinear stimulus-response relationships between stimuli (e.g., elevations in [Ca(2+)]) and kinase activation are essential for translating brief stimuli into long-lasting gene activation and synaptic weight increases. Convergence of multiple kinase activities to induce L-LTP helps to generate a threshold whereby the amount of L-LTP varies steeply with the number of brief (tetanic) electrical stimuli. The model simulates tetanic, -burst, pairing-induced, and chemical L-LTP, as well as L-LTP due to synaptic tagging. The model also simulates inhibition of L-LTP by inhibition of MAPK, CAMKII, PKA, or CAMKIV. The model predicts results of experiments to delineate mechanisms underlying L-LTP induction and expression. For example, the cAMP antagonist RpcAMPs, which inhibits L-LTP induction, is predicted to inhibit ERK activation. The model also appears useful to clarify similarities and differences between hippocampal L-LTP and long-term synaptic strengthening in other systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Type IV secretion (T4S) systems translocate DNA and protein effectors through the double membrane of Gram-negative bacteria. The paradigmatic T4S system in Agrobacterium tumefaciens is assembled from 11 VirB subunits and VirD4. Two subunits, VirB9 and VirB7, form an important stabilizing complex in the outer membrane. We describe here the NMR structure of a complex between the C-terminal domain of the VirB9 homolog TraO (TraO(CT)), bound to VirB7-like TraN from plasmid pKM101. TraO(CT) forms a beta-sandwich around which TraN winds. Structure-based mutations in VirB7 and VirB9 of A. tumefaciens show that the heterodimer interface is conserved. Opposite this interface, the TraO structure shows a protruding three-stranded beta-appendage, and here, we supply evidence that the corresponding region of VirB9 of A. tumefaciens inserts in the membrane and protrudes extracellularly. This complex structure elucidates the molecular basis for the interaction between two essential components of a T4S system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Microarray technology is a high-throughput method for genotyping and gene expression profiling. Limited sensitivity and specificity are one of the essential problems for this technology. Most of existing methods of microarray data analysis have an apparent limitation for they merely deal with the numerical part of microarray data and have made little use of gene sequence information. Because it's the gene sequences that precisely define the physical objects being measured by a microarray, it is natural to make the gene sequences an essential part of the data analysis. This dissertation focused on the development of free energy models to integrate sequence information in microarray data analysis. The models were used to characterize the mechanism of hybridization on microarrays and enhance sensitivity and specificity of microarray measurements. ^ Cross-hybridization is a major obstacle factor for the sensitivity and specificity of microarray measurements. In this dissertation, we evaluated the scope of cross-hybridization problem on short-oligo microarrays. The results showed that cross hybridization on arrays is mostly caused by oligo fragments with a run of 10 to 16 nucleotides complementary to the probes. Furthermore, a free-energy based model was proposed to quantify the amount of cross-hybridization signal on each probe. This model treats cross-hybridization as an integral effect of the interactions between a probe and various off-target oligo fragments. Using public spike-in datasets, the model showed high accuracy in predicting the cross-hybridization signals on those probes whose intended targets are absent in the sample. ^ Several prospective models were proposed to improve Positional Dependent Nearest-Neighbor (PDNN) model for better quantification of gene expression and cross-hybridization. ^ The problem addressed in this dissertation is fundamental to the microarray technology. We expect that this study will help us to understand the detailed mechanism that determines sensitivity and specificity on the microarrays. Consequently, this research will have a wide impact on how microarrays are designed and how the data are interpreted. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Measurement of the absorbed dose from ionizing radiation in medical applications is an essential component to providing safe and reproducible patient care. There are a wide variety of tools available for measuring radiation dose; this work focuses on the characterization of two common, solid-state dosimeters in medical applications: thermoluminescent dosimeters (TLD) and optically stimulated luminescent dosimeters (OSLD). There were two main objectives to this work. The first objective was to evaluate the energy dependence of TLD and OSLD for non-reference measurement conditions in a radiotherapy environment. The second objective was to fully characterize the OSLD nanoDot in a CT environment, and to provide validated calibration procedures for CT dose measurement using OSLD. Current protocols for dose measurement using TLD and OSLD generally assume a constant photon energy spectrum within a nominal beam energy regardless of measurement location, tissue composition, or changes in beam parameters. Variations in the energy spectrum of therapeutic photon beams may impact the response of TLD and OSLD and could thereby result in an incorrect measure of dose unless these differences are accounted for. In this work, we used a Monte Carlo based model to simulate variations in the photon energy spectra of a Varian 6MV beam; then evaluated the impact of the perturbations in energy spectra on the response of both TLD and OSLD using Burlin Cavity Theory. Energy response correction factors were determined for a range of conditions and compared to measured correction factors with good agreement. When using OSLD for dose measurement in a diagnostic imaging environment, photon energy spectra are often referenced to a therapy-energy or orthovoltage photon beam – commonly 250kVp, Co-60, or even 6MV, where the spectra are substantially different. Appropriate calibration techniques specifically for the OSLD nanoDot in a CT environment have not been presented in the literature; furthermore the dependence of the energy response of the calibration energy has not been emphasized. The results of this work include detailed calibration procedures for CT dosimetry using OSLD, and a full characterization of this dosimetry system in a low-dose, low-energy setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated a modified home-based model of family preservation services, the long-term community case management model, as operationalized by a private child welfare agency that serves as the last resort for hard-to-serve families with children at severe risk of out-of-home placement. The evaluation used a One-Group Pretest-Posttest design with a modified time-series design to determine if the intervention would produce a change over time in the composite score of each family's Child Well-Being Scales (CWBS). A comparison of the mean CWBS scores of the 208 families and subsets of these families at the pretest and various posttests showed a statistically significant decrease in the CWBS scores, indicating decreased risk factors. The longer the duration of services, the greater the statistically significant risk reduction. The results support the conclusion that the families who participate in empowerment-oriented community case management, with the option to extend service duration to resolve or ameliorate chronic family problems, have experienced effective strengthening in family functioning.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nine membrane-bound isoforms of adenylyl cyclase (AC), via synthesis of the signaling molecule cyclic AMP (cAMP), are involved in many isoform specific physiological functions. Decreasing AC5 activity has been shown to have potential therapeutic benefit, including reduced stress on the heart, pain relief, and attenuation of morphine dependence and withdrawal behaviors. However, AC structure is well conserved, and there are currently no isoform selective AC inhibitors in clinical use. P-site inhibitors inhibit AC directly at the catalytic site, but with an uncompetitive or noncompetitive mechanism. Due to this mechanism and nanomolar potency in cell-free systems, attempts at ligand-based drug design of novel AC inhibitors frequently use P-site inhibitors as a starting template. One small molecule inhibitor designed through this process, NKY80, is described as an AC5 selective inhibitor with low micromolar potency in vitro. P-site inhibitors reveal important ligand binding “pockets” in the AC catalytic site, but specific interactions that give NKY80 selectivity are unclear. Identifying and characterizing unique interactions between NKY80 and AC isoforms would significantly aid the development of isoform selective AC inhibitors. I hypothesized that NKY80’s selective inhibition is conferred by AC isoform specific interactions with the compound within the catalytic site. A structure-based virtual screen of the AC catalytic site was used to identify novel small molecule AC inhibitors. Identified novel inhibitors are isoform selective, supporting the catalytic site as a region capable of more potent isoform selective inhibition. Although NKY80 is touted commercially as an AC5 selective inhibitor, its characterization suggests strong inhibition of both AC5 and the closely related AC6. NKY80 was also virtually docked to AC to determine how NKY80 binds to the catalytic site. My results show a difference between NKY80 binding and the conformation of classic P-site inhibitors. The selectivity and notable differences in NKY80 binding to the AC catalytic site suggest a catalytic subregion more flexible in AC5 and AC6 that can be targeted by selective small molecule inhibitors.