16 resultados para Stability and Convergence

em DigitalCommons@The Texas Medical Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mammalian constitutive photomorphogenic 1 (COP1), a p53 E3 ubiquitin ligase, is a key negative regulator for p53. DNA damage leads to the translocation of COP1 to the cytoplasm, but the underlying mechanism remains unknown. We discovered that 14-3-3σ controlled COP1 subcellular localization and protein stability. Investigation of the underlying mechanism suggested that, upon DNA damage, 14-3-3σ bound to phosphorylated COP1 at S387, resulting in COP1 translocation to the cytoplasm and cytoplasmic COP1 ubiquitination and proteasomal degradation. 14-3-3σ targeted COP1 for degradation to prevent COP1-mediated p53 degradation, p53 ubiquitination, and p53 transcription repression. COP1 expression promoted cell proliferation, cell transformation, and tumor progression, attesting to its role in cancer promotion. 14-3-3σ negatively regulated COP1 function and prevented tumor growth in cancer xenografts. COP1 protein levels were inversely correlated with 14-3-3σ protein levels in human breast and pancreatic cancer specimens. Together, these results define a novel, detailed mechanism for the posttranslational regulation of COP1 upon DNA damage and provide a mechanistic explanation of the correlation of COP1 overexpression with 14-3-3σ downregulation during tumorigenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the definition of what is considered a family changes in our society, the family unit itself continues to undergo changes. These changes can sometimes lead to decreased stability within the family unit. One of the greatest challenges facing those researching this phenomenon is the lack of consistency within the existing body of research surrounding what familial instability actually is (the definition). This critical review of the literature examines the current body of literature in order to identify what is known about family stability and its impact on adolescent behavior, as well as what gaps currently exist. This review focuses on definitions of family stability, current factors surrounding the stability of the family unit, and addresses the implications that the current body of literature presents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cmd4 is a colcemid-sensitive CHO cell line that is temperature sensitive for growth and expresses an altered $\beta$-tubulin, $\beta\sb1$. One revertant of this cell line, D2, exhibits a further alteration in $\beta\sb1$ resulting in an acidic shift in its isoelectric point and a decrease in its molecular weight to 40 kD, as measured by two dimensional gel electrophoresis. This $\beta$-tubulin variant has been shown to be assembly-defective and unstable. Characterization of the mutant $\beta\sb1$ in D2 by high pressure liquid chromatography (HPLC) revealed the loss of methionine containing tryptic peptides 7,8,9, and 10. Southern analysis of the genomic DNA digested with several different restriction enzymes resulted in the appearance of new restriction fragments 250 base pairs shorter than the corresponding fragments from the wild-type $\beta\sb1$-tubulin gene. Northern analysis on mRNA from D2 revealed two new message products that also differed by 250 bases from the corresponding wild type $\beta$-tubulin transcripts. To precisely define the region of the alteration, cloning and sequencing of the mutant and wild type genomic $\beta$-tubulin genes were conducted. A size-selected EcoRI genomic library was prepared using the Stratagene lambda Zap II phage cloning system. Using subclones of CHO $\beta$-tubulin cDNA as probes, a 2.5 kb wild type clone and a 2.3 kb mutant clone were identified from this library. Each of these was shown to contain a portion of the gene extending from intron 3 through the end of the coding sequence in exon 4 and into the 3$\sp\prime$ untranslated region on the basis of alignment with the published human $\beta$-tubulin sequence. Sequencing of the mutant 2.3 kb clone revealed that the mutation is due to a 246 base pair internal deletion in exon 4 (base pair 756-1001) that encodes amino acids 253-334. This deletion results in the loss of a putative binding site for GTP which could potentially explain the phenotype of this mutant $\beta$-tubulin. Also sequence comparison of the 3$\sp\prime$ untranslated region between different species revealed the conservation of 200 base pairs with 78% homology. It is proposed that this region could play an important role in the regulation of $\beta$-tubulin gene expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partially functional forms of iso-1-cytochrome c from Saccharomyces cerevisiae were obtained by replacements of the evolutionarily conserved proline 71 with valine, isoleucine and threonine (Ernst et.al.,1985). Pro-71 lies at the juncture of two short helical regions and is believed to be important for proper local polypeptide chain folding within the iso-1-cytochrome c structure.^ To study folding in the absence of intermolecular disulfide dimer formation the free sulfhydryl group of Cys-102 was modified in both wild type and mutant proteins with an alkylating reagent, methyl methanethiosulfonate. Spectral analysis of the wild type and mutant proteins shows that the native-like functional (or partially functional) folded structure of cytochrome c is retained in the chemically modified derivatives. The replacement of Pro-71 with valine, isoleucine or threonine reduces the intensity of the 696 nm absorbance band which is an indicator of the Met-80 ligation to the heme. Thermal stability and guanidine hydrochloride unfolding studies of the mutant proteins shows a destabilization of the protein as a result of mutation. The degree of destabilization depends on the chemical nature of the substituent amino acid in the mutant protiens.^ Kinetics of folding/unfolding reactions of the proteins were monitored by fluorescence changes using stopped flow mixing to obtain guanidine hydrochloride concentration jumps ending below, within, and above the transition zone. The replacement of Pro-71 alters the rate on one of the fastest phases, $\tau\sb3$, while the two other phases, $\tau\sb1$ & $\tau\sb2$, remain the same.^ Slow refolding kinetic studies indicate that replacement of Pro-71 does not completely eliminate the absorbance or fluorescence detected slow phases leading to the conclusion that Pro-71 is not involved in the generation of the slow phases in the folding kinetics of iso-1-cytochrome c.^ The alkaline conformational change involving the disappearance of the 696 nm absorbance band occurs with increasing pH in the alkaline pH region (Davis et al., 1974). The apparent pK of this conformational change in mutant proteins is shifted as much as two pH units compared to wild type. The equilibrium and kinetic data of alkaline transition for the wild type follows a simple mechanism proposed by Davis et al., (1974) for horse heart cytochrome c. A more complex mechanism is proposed for the behavior of the mutant proteins. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RMI1 (BLM-Associated Protein 75 or Blap75) is highly conserved from yeast to human. Previous studies have shown that hRMI1 is required for BLM/TopoIIIα/RMI1 complex stability and function. However, in vivo functions of RMI1 remain elusive. To address this question, I generated RMI1 knockout mice by homologous replacement targeting. While RMI1+/- mice showed no obvious phenotype, deletion of both RMI1 alleles leads to early embryonic lethality before implantation. I then generated RMI1/p53 double knockout mice. After ionizing radiation treatment at 4Gy, RMI1/p53 double-heterzygous mice showed shortened tumor latency and aggressive tumor types when comparing with wild type, RMI1+/- and p53+/- control cohorts. My study suggests a dual-functional role of RMI1 in early embryonic development and tumor suppression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Liposomes, also known as nontoxic, biodegradable, and non-immunogenic therapeutic delivery vehicles, have been proposed as a carrier for drugs and antitumor agents in cancer chemotherapy. Echogenic liposomes (ELIP) have the potential to entrap air or bioactive gas to enhance acoustic reflectivity in ultrasound and are used as a contrast agent. The innovative part of this study is based on a novel concept to encapsulate nitric oxide (NO) gas into ELIP, deliver it to breast cancer cells, and control its release via direct ultrasound exposure. Studies on the effect of NO in tumor biology have shown that a high levels of NO (> 300 nM) leads to cytostasis or apoptosis by decreasing the translation of several cell cycle proteins and stimulating cancer cell death by activating the p53 pathway. The central hypothesis is that NO gas can be packaged and delivered through a delivery methodology to breast cancer cells to facilitate tumor regression with minimal systemic toxicity. The primary goal of this thesis is to develop an echogenic liposomal solution that has the ability to encapsulate NO, to release NO locally upon ultrasound exposure, and to induce breast cancer cell death. NO-containing echogenic liposomes (NO-ELIP) were prepared by the freezing-under-pressure method previously developed in our laboratory. It was necessary to evaluate stability of NO-ELIP and release of NO from NO-ELIP by measuring echogenicity using intravascular ultrasound images. Breast cancer cell lines, MDA-MB-231 and MDA-MB-468, were selected to investigate the cytotoxic effects of NO liberated from NO-ELIP and their response to NO concentration. Ultrasound-triggered NO release from NO-ELIP using ultrasound activation was studied. It was demonstrated that NO-ELIP remained stable for 5 hours in bovine serum albumin. Delivery of NO using NO-ELIP induced cytotoxicity and programmed cell death of MDA-MB-231 and MDA-MB-468 after 5 hours of incubation. Enhancement of the NO-ELIP effect for therapeutic application was observed with ultrasound activation. This work demonstrates that NO-ELIP can incorporate and deliver NO to breast cancer cells providing increased NO stability and ultrasound-controlled NO release. Improved therapeutic effect with the use of NO-ELIP is expected to be found for breast cancer treatment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The following commentary serves as a response to the article, “Family Stability and Childhood Behavioral Outcomes: A Critical Review of the Literature.” The review article provides a good overview into family factors affecting children, but falls short in discussing how modifying family factors could change specific child behavioral outcomes. The next step in this field of research is a unified definition of family stability, a standardized measure of family stability, and discussion of how child behavior affects family stability, and how changes in family stability could affect child behavior.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neuromodulation is essential to many functions of the nervous system. In the simple gastropod mollusk Aplysia californica, neuromodulation of the circuits for the defensive withdrawal reflexes has been associated with several forms of learning. In the present work, the neurotransmitters and neural circuitry which contribute to the modulation of the tail-siphon withdrawal reflex were examined.^ A recently-identified neuropeptide transmitter, buccalin A was found to modulate the biophysical properties of the sensory neurons that mediate the reflex. The actions of buccalin A on the sensory neurons were compared with those of the well-characterized modulatory transmitter serotonin, and convergence and divergence in the actions of these two transmitters were evaluated. Buccalin A dramatically increased the excitability of sensory neurons and occluded further enhancement of excitability by serotonin. Buccalin A produced no significant change in spike duration, and it did not block serotonin-induced spike broadening. Voltage-clamp analysis revealed the currents that may be involved in the effects on spike duration and excitability. Buccalin A decreased an outward current similar to the S-K$\sp+$ current (I$\sb{\rm K,S}$). Buccalin A appeared to occlude further modulation of I$\sb{\rm K,S}$ by serotonin, but did not block serotonin-induced modulation of the voltage-dependent delayed rectifier K$\sp+$ current (I$\sb{\rm K,V}$). These results suggest that buccalin A converges on some, but not all, of the same subcellular modulatory pathways as serotonin.^ In order to begin to understand neuromodulation in a more physiological context for the tail-siphon withdrawal reflex, the modulatory circuitry for the tail-withdrawal circuit was examined. Mechanoafferent neurons in the J cluster of the cerebral ganglion were identified as elements of a modulatory circuit for the reflex. Excitatory and inhibitory connections were observed between the J cells and the pleural sensory neurons, the tail motor neurons, and several classes of interneurons for the tail-siphon withdrawal circuit. The J cells produced both fast and slow PSPs in these neurons. Of particular interest was the ability of the J cells to produce slow EPSPs in the pleural sensory neurons. These slow EPSPs were associated with an increase in the excitability of the sensory neurons. The J cells appear to mediate both sensory and modulatory inputs to the circuit for the tail-siphon withdrawal reflex from the anterior part of the animal. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A UV-induced mutation of the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPD) was characterized in the CHO clone A24. The asymmetric 4-banded zymogram and an in vitro GAPD activity equal to that of wild type cells were not consistent with models of a mutant heterozygote producing equal amounts of wild type and either catalytically active or inactive mutant subunits that interacted randomly. Cumulative evidence indicated that the site of the mutation was the GAPD structural locus expressed in CHO wild type cells, and that the mutant allele coded for a subunit that differed from the wild type subunit in stability and kinetics. The evidence included the appearance of a fifth band, the putative mutant homotetramer, after addition of the substrate glyceraldehyde-3-phosphate (GAP) to the gel matrix; dilution experiments indicating stability differences between the subunits; experiments with subsaturating levels of GAP indicating differences in affinity for the substrate; GAPD zymograms of A24 x mouse hybrids that were consistent with the presence of two distinct A24 subunits; independent segregation of A24 wild type and mutant electrophoretic bands from the hybrids, which was inconsistent with models of mutation of a locus involved in posttranslational modification; the mapping of both wild type and mutant forms of GAPD to chromosome 8; and the failure to detect any evidence of posttranslational modification (of other A24 isozymes, or through mixing of homogenates of A24 and mouse).^ The extent of skewing of the zymogram toward the wild type band, and the unreduced in vitro activity were inconsistent with models based solely on differences in activity of the two subunits. Comparison of wild type homotetramer bands in wild type cells and A24 suggested the latter had a preponderance of wild type subunits over mutant subunits, and had more GAPD tetramers than did CHO controls.^ Two CHO linkages, GAPD-triose phosphate isomerase, and acid phosphatase 2-adenosine deaminase were reported provisionally, and several others were confirmed. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the current model for bacterial cell division, the FtsZ protein forms a ring that marks the division plane, creating a cytoskeletal framework for the subsequent action of other essential division proteins such as FtsA and ZipA. The putative protein complex ultimately generates the division septum. The essential cell division protein FtsZ is a functional and structural homolog of eukaryotic tubulin, and like tubulin, FtsZ hydrolyzes GTP and self-assembles into protein filaments in a strictly GTP-dependent manner. FtsA shares sequence similarity with members of the ATPase superfamily that include actin, but its actual function remains unknown. To test the division model and elucidate functions of the division proteins, this dissertation primarily focuses on the analysis of FtsZ and FtsA in Escherichia coli. ^ By tagging with green fluorescent protein, we first demonstrated that FtsA also exhibits a ring-like structure at the potential division site. The localization of FtsA was dependent on functional FtsZ, suggesting that FtsA is recruited to the septum by the FtsZ ring. In support of this idea, we showed that FtsA and FtsZ directly interact. Using a novel E. coli in situ assay, we found that the FtsA-FtsZ interaction appears to be species-specific, although an interspecies interaction could occur between FtsA and FtsZ proteins from two closely related organisms. In addition, mutagenesis of FtsA revealed that no single domain is solely responsible for its septal localization or interaction with FtsZ. To explore the function of FtsA, we purified FtsA protein and demonstrated that it has ATPase activity. Furthermore, purified FtsA stimulates disassembly of FtsZ polymers in a sedimentation assay but does not affect GTP hydrolysis of FtsZ. This result suggests that in the cell, FtsA may function similarly in regulating dynamic instability of the FtsZ ring during the cell division process. ^ To elucidate the structure-function relationship of FtsZ, we carried out thorough genetic and functional analyses of the mutagenized FtsZ derivatives. Our results indicate that the conserved N-terminal domain of FtsZ is necessary and sufficient for FtsZ self-assembly and localization. Moreover, we discovered a critical role for an extreme C-terminal domain of FtsZ that consists of only 12 residues. Truncated FtsZ derivatives lacking this domain, though able to polymerize and localize, are defective in ring formation in vivo as well as interaction with FtsA and ZipA. Alanine scanning mutagenesis of this region pinpointed at least five residues necessary for the function of FtsZ. Studies of protein levels and protein-protein interactions suggested that these residues may be involved in regulating protein stability and/or FtsZ-FtsA interactions. Interestingly, two of the point mutants exhibited dominant-negative phenotypes. ^ In summary, results from this thesis work have provided additional support for the division machinery model and will contribute to a better understanding of the coordinate functions of FtsA and FtsZ in the cell division process. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

mRNA 3′ polyadenylation is central to mRNA biogenesis in prokaryotes and eukaryotes, and is implicated in numerous aspects of mRNA metabolism, including efficiency of mRNA export from the nucleus, message stability, and initiation of translation. However, due to the great complexity of the eukaryotic polyadenylation apparatus, the mechanisms of RNA 3 ′ end processing have remained elusive. Although the RNA processing reactions leading to polyadenylated messenger RNA have been studied in many systems, and much progress has been made, a complete understanding of the biochemistry of the poly(A) polymerase enzyme is still lacking. My research uses Vaccinia virus as a model system to gain a better understanding of this complicated polyadenylation process, which consist of RNA binding, catalysis and polymerase translocation. ^ Vaccinia virus replicates in the cytoplasm of its host cell, so it must employ its own poly(A) polymerase (PAP), a heterodimer of two virus encoded proteins, VP55 and VP39. VP55 is the catalytic subunit, adding 30 adenylates to a non-polyadenylated RNA in a rapid processive manner before abruptly changing to a slow, non-processive mode of adenylate addition and dissociating from the RNA. VP39 is the stimulatory subunit. It has no polyadenylation catalytic activity by itself, but when associated with VP55 it facilitates the semi-processive synthesis of tails several hundred adenylates in length. ^ Oligonucleotide selection and competition studies have shown that the heterodimer binds a minimal motif of (rU)2 (N)25 U, the “heterodimer binding motif”, within an oligonucleotide, and its primer selection for polyadenylation is base-type specific. ^ Crosslinking studies using photosensitive uridylate analogs show that within a VP55-VP39-primer ternary complex, VP55 comes into contact with all three required uridylates, while VP39 only contacts the downstream uridylate. Further studies, using a backbone-anchored photosensitive crosslinker show that both PAP subunits are in close proximity to the downstream −10 to −21 region of 50mer model primers containing the heterodimer binding motif. This equal crosslinking to both subunits suggests that the dimerization of VP55 and VP39 creates either a cleft or a channel between the two subunits through which this region of RNA passes. ^ Peptide mapping studies of VP39 covalently crosslinked to the oligonucleotide have identified residue R107 as the amino acid in close proximity to the −10 uridylate. This helps us project a conceptual model onto the known physical surface of this subunit. In the absence of any tertiary structural data for VP55, we have used a series of oligonucleotide selection assays, as well as crosslinking, nucleotide transfer assays, and gel shift assays to gain insight into the requirements for binding, polyadenylation and translocation. Collectively, these data allow us to put together a comprehensive model of the structure and function of the polyadenylation ternary complex consisting of VP39, VP55 and RNA. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, can achieve significant reductions in plasma low-density lipoprotein (LDL)-cholesterol levels. Experimental and clinical evidence now shows that some statins interfere with formation of atherosclerotic lesions independent of their hypolipidemic properties. Vulnerable plaque rupture can result in thrombus formation and artery occlusion; this plaque deterioration is responsible for most acute coronary syndromes, including myocardial infarction (MI), unstable angina, and coronary death, as well as coronary heart diseaseequivalent non-hemorrhagic stroke. Inhibition of HMG-CoA reductase has potential pleiotropic effects other than lipid-lowering, as statins block mevalonic acid production, a precursor to cholesterol and numerous other metabolites. Statins' beneficial effects on clinical events may also thus involve nonlipid-related mechanisms that modify endothelial function, inflammatory responses, plaque stability, and thrombus formation. Aspirin, routinely prescribed to post-MI patients as adjunct therapy, may potentiate statins beneficial effects, as aspirin does not compete metabolically with statins but acts similarly on atherosclerotic lesions. Common functions of both medications include inhibition of platelet activity and aggregation, reduction in atherosclerotic plaque macrophage cell count, and prevention of atherosclerotic vessel endothelial dysfunction. The Cholesterol and Recurrent Events (CARE) trial provides an ideal population in which to examine the combined effects of pravastatin and aspirin. Lipid levels, intermediate outcomes, are examined by pravastatin and aspirin status, and differences between the two pravastatin groups are found. A modified Cox proportional-hazards model with aspirin as a time-dependent covariate was used to determine the effect of aspirin and pravastatin on the clinical cardiovascular composite endpoint of coronary heart disease death, recurrent MI or stroke. Among those assigned to pravastatin, use of aspirin reduced the composite primary endpoint by 35%; this result was similar by gender, race, and diabetic status. Older patients demonstrated a nonsignificant 21% reduction in the primary outcome, whereas the younger had a significant reduction of 43% in the composite primary outcome. Secondary outcomes examined include coronary artery bypass graft (38% reduction), nonsurgical bypass, peripheral vascular disease, and unstable angina. Pravastatin and aspirin in a post-MI population was found to be a beneficial combination that seems to work through lipid and nonlipid, anti-inflammatory mechanisms. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The inability to maintain genomic stability and control proliferation are hallmarks of many cancers, which become exacerbated in the presence of unrepaired DNA damage. Such genotoxic stresses trigger the p53 tumor suppressor network to activate transient cell cycle arrest allowing for DNA repair; if the damage is excessive or irreparable, apoptosis or cellular senescence is triggered. One of the major DNA repair pathway that mends DNA double strand breaks is non-homologous end joining (NHEJ). Abrogating the NHEJ pathway leads to an accumulation of DNA damage in the lymphoid system that triggers p53-mediated apoptosis; complete deletion of p53 in this system leads to aggressive lymphomagenesis. Therefore, to study the effect of p53-dependent cell cycle arrest, we utilized a hypomorphic, separation-of-function mutant, p53p/p, which completely abrogates apoptosis yet retains partial cell cycle arrest ability. We crossed DNA ligase IV deficiency, a downstream ligase crucial in mending breaks during NHEJ, into the p53p/p background (Lig4-/-p53p/p). The accumulation of DNA damage activated the p53/p21 axis to trigger cellular senescence in developing lymphoid cells, which absolutely suppressed tumorigenesis. Interestingly, these mice progressively succumb to severe diabetes. Mechanistic analysis revealed that spontaneous DNA damage accumulated in the pancreatic b-cells, a unique subset of endocrine cells solely responsible for insulin production to regulate glucose homeostasis. The genesis of adult b-cells predominantly occurs through self-replication, therefore modulating cellular proliferation is an essential component for renewal. The progressive accumulation of DNA damage, caused by Lig4-/-, activated p53/p21-dependent cellular senescence in mutant pancreatic b-cells that lead to islet involution. Insulin levels subsequently decreased, deregulating glucose homeostasis driving overt diabetes. Our Lig4-/-p53p/p model aptly depicts the dichotomous role of cellular senescence—in the lymphoid system prevents tumorigenesis yet in the endocrine system leads to the decrease of insulin-producing cells causing diabetes. To further delineate the function of NHEJ in pancreatic b-cells, we analyzed mice deficient in another component of the NHEJ pathway, Ku70. Although most notable for its role in DNA damage recognition and repair within the NHEJ pathway, Ku70 has NHEJ-independent functions in telomere maintenance, apoptosis, and transcriptional regulation/repression. To our surprise, Ku70-/-p53p/p mutant mice displayed a stark increase in b-cell proliferation, resulting in islet expansion, heightened insulin levels and hypoglycemia. Augmented b-cell proliferation was accompanied with the stabilization of the canonical Wnt pathway, responsible for this phenotype. Interestingly, the progressive onset of cellular senescence prevented islet tumorigenesis. This study highlights Ku70 as an important modulator in not only maintaining genomic stability through NHEJ-dependent functions, but also reveals a novel NHEJ-independent function through regulation of pancreatic b-cell proliferation. Taken in aggregate, these studies underscore the importance for NHEJ to maintain genomic stability in b-cells as well as introduces a novel regulator for pancreatic b-cell proliferation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes. I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos showed aberrant centrosome dynamics in TLK-1-depleted embryos. Several mechanisms contribute to spindle rotation, one of which is the anchoring of astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the cell cortices, and the types of microtubule attachments appear to differ from wild-type embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus suggesting that the delayed spindle rotation could be in part due to a lack of appropriate microtubule attachments to the cell cortex. Together with recently published biochemical data revealing the Tousled-like kinases associate with components of the dynein microtubule motor complex in humans, these data suggest that Tousled-like kinases play an important role in mitotic spindle assembly and positioning.