5 resultados para Single-Photon Emission-Computed
em DigitalCommons@The Texas Medical Center
Resumo:
Apoptosis, a form of programmed cell death, is critical to homoeostasis, normal development, and physiology. Dysregulation of apoptosis can lead to the accumulation of unwanted cells, such as occurs in cancer, and the removal of needed cells or disorders of normal tissues, such as heart, neurodegenerative, and autoimmune diseases. Noninvasive detection of apoptosis may play an important role in the evaluation of disease states and response to therapeutic intervention for a variety of diseases. It is desirable to have an imaging method to accurately detect and monitor this process in patients. In this study, we developed annexin A5-conjugated polymeric micellar nanoparticles dual-labeled with a near-infrared fluorescence fluorophores (Cy7) and a radioisotope (111In), named as 111In-labeled annexin A5-CCPM. In vitro studies demonstrated that annexin A5-CCPM could strongly and specifically bind to apoptotic cells. In vivo studies showed that apoptotic tissues could be clearly visualized by both single photon emission computed tomography (SPECT) and fluorescence molecular tomography (FMT) after intravenous injection of 111In-labeled Annexin A5-CCPM in 6 different apoptosis models. In contrast, there was little signal in respective healthy tissues. All the biodistribution data confirmed imaging results. Moreover, histological analysis revealed that radioactivity count correlated with fluorescence signal from the nanoparticles, and both signals co-localized with the region of apoptosis. In sum, 111In-labeled annexin A5-CCPM allowed visualization of apoptosis by both nuclear and optical imaging techniques. The complementary information acquired with multiple imaging techniques should be advantageous in improving diagnostics and management of patients.
Resumo:
Nuclear imaging is used for non-invasive detection, staging and therapeutic monitoring of tumors through the use of radiolabeled probes. Generally, these probes are used for applications in which they provide passive, non-specific information about the target. Therefore, there is a significant need for actively-targeted radioactive probes to provide functional information about the site of interest. This study examined endostatin, an endogenous inhibitor of tumor angiogenesis, which has affinity for tumor vasculature. The major objective of this study was to develop radiolabeled analogues of endostatin through novel chemical and radiochemical syntheses, and to determine their usefulness for tumor imaging using in vitro and in vivo models of vascular, mammary and prostate tumor cells. I hypothesize that this binding will allow for a non-invasive approach to detection of tumor angiogenesis, and such detection can be used for therapeutic monitoring to determine the efficacy of anti-angiogenic therapy. ^ The data showed that endostatin could be successfully conjugated to the bifunctional chelator ethylenedicysteine (EC), and radiolabeled with technetium-99m and gallium-68, providing a unique opportunity to use a single precursor for both nuclear imaging modalities: 99mTc for single photon emission computed tomography and 68Ga for positron emission tomography, respectively. Both radiolabeled analogues showed increased binding as a function of time in human umbilical vein endothelial cells and mammary and prostate tumor cells. Binding could be blocked in a dose-dependent manner by unlabeled endostatin implying the presence of endostatin receptors on both vascular and tumor cells. Animal biodistribution studies demonstrated that both analogues were stable in vivo, showed typical reticuloendothelial and renal excretion and produced favorable absorbed organ doses for application in humans. The imaging data provide evidence that the compounds quantitate tumor volumes with clinically-useful tumor-to-nontumor ratios, and can be used for treatment follow-up to depict changes occurring at the vascular and cellular levels. ^ Two novel endostatin analogues were developed and demonstrated interaction with vascular and tumor cells. Both can be incorporated into existing nuclear imaging platforms allowing for potential wide-spread clinical benefit as well as serving as a diagnostic tool for elucidation of the mechanism of action of endostatin. ^
Resumo:
Coronary artery disease (CAD) is the most common cause of morbidity and mortality in the United States. While Coronary Angiography (CA) is the gold standard test to investigate coronary artery disease, Prospective gated-64 Slice Computed Tomography (Prosp-64CT) is a new non-invasive technology that uses the 64Slice computed tomography (64CT) with electrocardiographic gating to investigate coronary artery disease. The aim of the current study was to investigate the role of Body Mass Index (BMI) as a factor affecting occurrence of CA after a Prosp-64CT, as well as the quality of the Prosp-64CT. Demographic and clinical characteristics of the study population were described. A secondary analysis of data on patients who underwent a Prosp-64CT for evaluation of coronary artery disease was performed. Seventy seven patients who underwent Prosp-64CT for evaluation for coronary artery disease were included. Fifteen patients were excluded because they had missing data regarding BMI, quality of the Prosp-64CT or CA. Thus, a total of 62 patients were included in the final analysis. The mean age was 56.2 years. The mean BMI was 31.3 kg/m 2. Eight (13%) patients underwent a CA within one month of Prosp-64CT. Eight (13%) patients had a poor quality Prosp-64CT. There was significant association of higher BMI as a factor for occurrence of CA post Prosp-64CT (P<0.05). There was a trend, but no statistical significance was observed for the association of being obese and occurrence of CA (P=0.06). BMI, as well as obesity, were not found to be significantly associated with poor quality of Prosp-64CT (P=0.19 and P=0.76, respectively). In conclusion, BMI was significantly associated with occurrence of CA within one month of Prosp-64CT. Thus, in patients with a higher BMI, diagnostic investigation with both tests could be avoided; rather, only a CA could be performed. However, the relationship of BMI to quality of Prosp-64CT needs to be further investigated since the sample size of the current study was small.^
Resumo:
Proton radiation therapy is gaining popularity because of the unique characteristics of its dose distribution, e.g., high dose-gradient at the distal end of the percentage-depth-dose curve (known as the Bragg peak). The high dose-gradient offers the possibility of delivering high dose to the target while still sparing critical organs distal to the target. However, the high dose-gradient is a double-edged sword: a small shift of the highly conformal high-dose area can cause the target to be substantially under-dosed or the critical organs to be substantially over-dosed. Because of that, large margins are required in treatment planning to ensure adequate dose coverage of the target, which prevents us from realizing the full potential of proton beams. Therefore, it is critical to reduce uncertainties in the proton radiation therapy. One major uncertainty in a proton treatment is the range uncertainty related to the estimation of proton stopping power ratio (SPR) distribution inside a patient. The SPR distribution inside a patient is required to account for tissue heterogeneities when calculating dose distribution inside the patient. In current clinical practice, the SPR distribution inside a patient is estimated from the patient’s treatment planning computed tomography (CT) images based on the CT number-to-SPR calibration curve. The SPR derived from a single CT number carries large uncertainties in the presence of human tissue composition variations, which is the major drawback of the current SPR estimation method. We propose to solve this problem by using dual energy CT (DECT) and hypothesize that the range uncertainty can be reduced by a factor of two from currently used value of 3.5%. A MATLAB program was developed to calculate the electron density ratio (EDR) and effective atomic number (EAN) from two CT measurements of the same object. An empirical relationship was discovered between mean excitation energies and EANs existing in human body tissues. With the MATLAB program and the empirical relationship, a DECT-based method was successfully developed to derive SPRs for human body tissues (the DECT method). The DECT method is more robust against the uncertainties in human tissues compositions than the current single-CT-based method, because the DECT method incorporated both density and elemental composition information in the SPR estimation. Furthermore, we studied practical limitations of the DECT method. We found that the accuracy of the DECT method using conventional kV-kV x-ray pair is susceptible to CT number variations, which compromises the theoretical advantage of the DECT method. Our solution to this problem is to use a different x-ray pair for the DECT. The accuracy of the DECT method using different combinations of x-ray energies, i.e., the kV-kV, kV-MV and MV-MV pair, was compared using the measured imaging uncertainties for each case. The kV-MV DECT was found to be the most robust against CT number variations. In addition, we studied how uncertainties propagate through the DECT calculation, and found general principles of selecting x-ray pairs for the DECT method to minimize its sensitivity to CT number variations. The uncertainties in SPRs estimated using the kV-MV DECT were analyzed further and compared to those using the stoichiometric method. The uncertainties in SPR estimation can be divided into five categories according to their origins: the inherent uncertainty, the DECT modeling uncertainty, the CT imaging uncertainty, the uncertainty in the mean excitation energy, and SPR variation with proton energy. Additionally, human body tissues were divided into three tissue groups – low density (lung) tissues, soft tissues and bone tissues. The uncertainties were estimated separately because their uncertainties were different under each condition. An estimate of the composite range uncertainty (2s) was determined for three tumor sites – prostate, lung, and head-and-neck, by combining the uncertainty estimates of all three tissue groups, weighted by their proportions along typical beam path for each treatment site. In conclusion, the DECT method holds theoretical advantages in estimating SPRs for human tissues over the current single-CT-based method. Using existing imaging techniques, the kV-MV DECT approach was capable of reducing the range uncertainty from the currently used value of 3.5% to 1.9%-2.3%, but it is short to reach our original goal of reducing the range uncertainty by a factor of two. The dominant source of uncertainties in the kV-MV DECT was the uncertainties in CT imaging, especially in MV CT imaging. Further reduction in beam hardening effect, the impact of scatter, out-of-field object etc. would reduce the Hounsfeld Unit variations in CT imaging. The kV-MV DECT still has the potential to reduce the range uncertainty further.
Resumo:
This project assessed the effectiveness of polymer gel dosimeters as tools for measuring the dose deposited by and LET of a proton beam. A total of three BANG® dosimeter formulations were evaluated: BANG®-3-Pro-2 BANGkits™ for dose measurement and two BANG®-3 variants, the LET-Baseline and LET-Meter dosimeters, for LET measurement. All dosimeters were read out using an OCT scanner. The basic characteristics of the BANGkits™ were assessed in a series of photon and electron irradiations. The dose-response relationship was found to be sigmoidal with a threshold for response of approximately 15 cGy. The active region of the dosimeter, the volume in which dosimeter response is not inhibited by oxygen, was found to make up roughly one fourth of the total dosimeter volume. Delivering a dose across multiple fractions was found to yield a greater response than delivering the same dose in a single irradiation. The dosimeter was found to accurately measure a dose distribution produced by overlapping photon fields, yielding gamma pass rates of 95.4% and 93.1% from two planar gamma analyses. Proton irradiations were performed for measurements of proton dose and LET. Initial irradiations performed through the side of a dosimeter led to OCT artifacts. Gamma pass rates of 85.7% and 89.9% were observed in two planar gamma analyses. In irradiations performed through the base of a dosimeter, gel response was found to increase with height in the dosimeter, even in areas of constant dose. After a correction was applied, gamma pass rates of 94.6% and 99.3% were observed in two planar gamma analyses. Absolute dose measurements were substantially higher (33%-100%) than the delivered doses for proton irradiations. Issues encountered while calibrating the LET-Meter gel restricted analysis of the LET measurement data to the SOBP of a proton beam. LET-Meter overresponse was found to increase linearly with track-average LET across the LET range that could be investigated (1.5 keV/micron – 3.5 keV/micron).