8 resultados para Rat-tissues
em DigitalCommons@The Texas Medical Center
Resumo:
In order to propose a role for internucleosomal high mobility group proteins (HMGs), and HI histone variants study of their levels and synthesis in a system of development and differentiation--rat spermatogenesis--was undertaken. HMG1, 2, 14, and 17 were isolated from rat testes and found to be very similar to calf thymus HMGs. Testis levels of HMGs, relative to DNA, were equivalent to other rat tissues for HMG1 (13 ug/mg DNA), HMG14 (2 ug/mg DNA), and HMG17 (5 ug/mg DNA). HMG2 levels were different among rat tissues, with three groups observed: (1) nonproliferating tissues (1-5 ug/mg DNA); (2) proliferating tissues (8-13 ug/mg DNA); and (3) the testis (32 ug/mg DNA). Other species (toad, opposum, mouse, dog, and monkey) showed the same testis-specific increase of HMG2. Populations of purified testis cell types were separated by centrifugal elutriation and density gradient centrifugation from adult and immature rat testes. Pachytene spermatocytes and early spermatids (56 and 47 ug/mg DNA, respectively) caused the testis-specific increase of HMG2 levels. Cell types preceding pachytenes (types A and B spermatogonia, mixtures of spermatogonia and early primary spermatocytes, and early pachytenes contained HMG2 levels similar to proliferating tissues (12 ug/mg DNA). Late spermatids did not contain HMGs. Somatic Sertoli and Leydig cells (2 ug/mg DNA) exhibited HMG2 levels similar to nonproliferating tissues. HMGs synthesized in spermatogonia and spermatocytes had similar specific activities, but early spermatids did not synthesize HMGs. Germ cells also contained an HMG2 species (on acid-urea gels) not found in somatic tissues. Other investigators have shown that HMGs may be associated with transcriptional or replicative processes. Thus, it is proposed that HMG2 plays a role in modulatable gene expression, while HMG1 is associated with housekeeping functions.^ HI histone variants were also studied throughout spermatogenesis. The minor somatic variant, HIa, is the predominant variant in spermatogonia and early primary spermatocytes. In early pachytenes, the testis-specific variant, HIt, is first synthesized and appears, largely replacing somatic variants HIbcd and e by late pachytene stage. Early spermatids contain the same HI composition as pachytenes, but do not synthesize HI histones. HI('0) is present in low amounts in all germ cells. These results suggest that expression of HI variants is developmentally controlled.^
Resumo:
Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis exists as two major and one minor ionic form in the macrophage cell line, RAW 264. The forms have the same molecular weight, 55,000, but differ in their isoelectric points, 5.2, 5.1, and 4.9-5.0. The hypothesis that phosphorylation accounts for the differences in the two major ionic forms and that phosphorylation is involved in the regulation of enzyme activity was investigated. Metabolic-radiolabeling of cells with $\sp{32}$P-orthophosphate indicated that only one of the major forms of the protein can be explained by phosphorylation: treatment of purified ODC with alkaline phosphatase resulted in the loss of the phosphorylated form of the protein, pl 5.1, with a concomitant increase in the unphosphorylated, pl 5.2, form of the protein. Characterization of the phosphorylation sites showed that serine was the present. Tryptic digests of $\sp{32}$P-labeled ODC, analyzed by either two dimensional tryptic peptide mapping or reverse-phase HPLC, contained only one major radiolabeled peptide.^ The role phosphorylation plays in the regulation of enzyme activity was also investigated. Treatment of purified ODC with alkaline phosphatase resulted in the loss of enzyme activity. A positive linear correlation exists between enzyme activity and the amount of phosphorylated form of the protein present.^ To ascertain if the two major forms of the protein were also found in animal cells, ODC was immunoprecipitated from various rat tissues, fractionated by isoelectric focusing, and detected by immunoblotting. ODC was present in rat tissues in a single major form, which comigrated with the pl 5.1, phosphorylated form of ODC present in RAW 264 cell.^ This study concludes that ODC exists as a phosphorylated form, pl 5.1, and an unphosphorylated form, pl 5.2 in RAW 264 cells. The amount of the phosphorylated form of ODC correlates well with the enzyme activity. ^
Resumo:
The present study investigated the role of oxygen-derived free radicals as mediators of acute damage to rat gastric mucosae exposed to topically applied absolute ethanol. Although a hydroxyl radical scavenger, Dimethylthiourea, was noted to exhibit profound gastroprotective properties, other pretreatment regimens employing a host of known free radical scavengers, and enzyme inhibitors failed to confirm this hypothesis. Furthermore, no change in mucosal malondialdehyde, an indicator of free radical attack to cell membranes, could be detected in ethanol exposed tissues. Taken together, the present study fails to confirm that oxygen-derived free radicals mediate the gastric damaging effects of topically applied absolute ethanol. ^
Resumo:
The cytochrome P450 (P450) monooxygenase system plays a major role in metabolizing a wide variety of xenobiotic as well as endogenous compounds. In performing this function, it serves to protect the body from foreign substances. However, in a number of cases, P450 activates procarcinogens to cause harm. In most animals, the highest level of activity is found in the liver. Virtually all tissues demonstrate P450 activity, though, and the role of the P450 monooxygenase system in these other organs is not well understood. In this project I have studied the P450 system in rat brain; purifying NADPH-cytochrome P450 reductase (reductase) from that tissue. In addition, I have examined the distribution and regulation of expression of reductase and P450 in various anatomical regions of the rat brain.^ NADPH-cytochrome P450 reductase was purified to apparent homogeneity and cytochrome P450 partially purified from whole rat brain. Purified reductase from brain was identical to liver P450 reductase by SDS-PAGE and Western blot techniques. Kinetic studies utilizing cerebral P450 reductase reveal Km values in close agreement with those determined with enzyme purified from rat liver. Moreover, the brain P450 reductase was able to function successfully in a reconstituted microsomal system with partially purified brain cytochrome P450 and with purified hepatic P4501A1 as measured by 7-ethoxycoumarin and 7-ethoxyresorufin O-deethylation. These results indicate that the reductase and P450 components may interact to form a competent drug metabolism system in brain tissue.^ Since the brain is not a homogeneous organ, dependent upon the well orchestrated interaction of numerous parts, pathology in one nucleus may have a large impact upon its overall function. Hence, the anatomical distribution of the P450 monooxygenase system in brain is important in elucidating its function in that organ. Related to this is the regulation of P450 expression in brain. In order to study these issues female rats--both ovariectomized and not--were treated with a number of xenobiotic compounds and sex steroids. The brains from these animals were dissected into 8 discrete regions and the presence and relative level of message for P4502D and reductase determined using polymerase chain reaction. Results of this study indicate the presence of mRNA for reductase and P4502D isoforms throughout the rat brain. In addition, quantitative PCR has allowed the determination of factors affecting the expression of message for these enzymes. ^
Resumo:
The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^
Resumo:
The significance of nutritional factors in cancer research has been strongly emphasized. Such research is concerned not only with epidemiological effects relative to dietary factors on the causation of cancer, but with nutritional effects as an energy source on the prevention of cancer. Many studies speculate that the energy flow between tumor and host can be regulated by dietary intake. However, little knowledge on the comparison of the specific nutritional and energy requirements of different cells and tissues is available. Most popular and essential energy sources for the body are the carbohydrates. Among them, xylitol is known as efficient an energy source as glucose. In carbohydrate metabolism, glycolysis is one of the major energy producing pathways. However, recently the existence of an alternate catabolic pathway in mammals for carbohydrate besides glycolysis, i.e. bypass through triosephosphates to lactate via methylglyoxal has been suggested. This bypass was implicated to regulate glycolysis and also be responsible for the fluctuation in the levels of a regulator of cell growth. Methylglyoxal itself is known as a cancerostatic agent. The alterations of biochemical parameters in xylitol metabolism in animals indicated that xylitol may be metabolized through a methylglyoxal pathway.^ To elucidate the biological effect of xylitol as an energy source and the biological effect of its metabolites as a cancerostatis agent, the mode and extent of metabolism must be understood in tumor-bearing animals. Differential utilization of xylitol and glucose, if any, between tumor and host in such animals may exert tissue selective effects on both in terms of methylglyoxal formation and energy provision. The aim of this work was to assess the extent to which the differential utilization of xylitol might be used to generate different metabolic pathways in tumor and host, and to consider a role of nutrition in cancer.^ The results disclose that the existence of a pathway for biological methylglyoxal formation in normal rat liver has been confirmed in single cell suspension; the metabolic significance of the methylglyoxal pathway in the metabolism of glucose and xylitol has been evaluated quantitatively in normal rat liver and the differential metabolism of glucose and xylitol through overall catabolic pathways of carbohydrates has been studied in normal hepatic cells, AS-30D hepatoma and other several hepatoma lines. ^
Resumo:
The purpose of the work performed in this dissertation was to examine some of the possible regulatory mechanisms involved in the initiation of muscular atrophy during periods of decreased muscle utilization resulting from hindlimb immobilization in the rat. A 37% decrease in the rate of total muscle protein synthesis which has been observed to occur in the first 6 h of immobilization contributes significantly to the observed loss of protein during immobilization.^ The rates of cytochrome c and actin synthesis were determined in adult rat red vastus lateralis and gastrocnemius muscles, respectively, by the constant infusion and incorporation of ('3)H-tyrosine into protein. The fractional synthesis rates of both actin and cytochrome c were significantly decreased (P < 0.05) in the 6th h of hindlimb immobilization.^ RHA was extracted from adult rat gastrocnemius muscle by modification of the phenol: chloroform: SDS extraction procedures commonly used for preparation of RNA for hybridization analysis from other mammalian tissues. RNA content of rat gastrocnemius muscle, as determined by this method of extraction and its subsequent quantification by UV absorbance and orcinol assay, was significantly greater than the RNA content previously determined for adult rat gastrocnemius by other commonly employed methods.^ RNA extracted by this method from gastrocnemius muscles of control and 6h immobilized rats was subjected to "dot blot" hybridization to ('32)P-labelled probe from plasmid p749, containing a cDNA sequence complementary to (alpha)-actin mRNA and from rat skeletal muscle. (alpha)-Actin specific mRNA content as estimated by this procedure is not significantly decreased in rat gastrocnemius following 6h or hindlimb immobilization. However, (alpha)-actin specific mRNA content is significantly decreased (P < 0.05) in adult rat gastrocnemius (alpha)-actin specific mRNA is not decreased in adult rat gastrocnemius muscle following 6h of immobilization, a time when actin synthesis is significantly decreased, it is concluded that a change in (alpha)-actin specific mRNA content is not the initiating event responsible for the early decrease in actin synthesis observed in the 6th h of immobilization. ^