CHARACTERIZATION OF HIGH MOBILITY GROUP AND HISTONE H1 PROTEIN LEVELS AND SYNTHESIS DURING SPERMATOGENESIS IN THE RAT


Autoria(s): BUCCI, LUKE ROBERT
Data(s)

01/01/1983

Resumo

In order to propose a role for internucleosomal high mobility group proteins (HMGs), and HI histone variants study of their levels and synthesis in a system of development and differentiation--rat spermatogenesis--was undertaken. HMG1, 2, 14, and 17 were isolated from rat testes and found to be very similar to calf thymus HMGs. Testis levels of HMGs, relative to DNA, were equivalent to other rat tissues for HMG1 (13 ug/mg DNA), HMG14 (2 ug/mg DNA), and HMG17 (5 ug/mg DNA). HMG2 levels were different among rat tissues, with three groups observed: (1) nonproliferating tissues (1-5 ug/mg DNA); (2) proliferating tissues (8-13 ug/mg DNA); and (3) the testis (32 ug/mg DNA). Other species (toad, opposum, mouse, dog, and monkey) showed the same testis-specific increase of HMG2. Populations of purified testis cell types were separated by centrifugal elutriation and density gradient centrifugation from adult and immature rat testes. Pachytene spermatocytes and early spermatids (56 and 47 ug/mg DNA, respectively) caused the testis-specific increase of HMG2 levels. Cell types preceding pachytenes (types A and B spermatogonia, mixtures of spermatogonia and early primary spermatocytes, and early pachytenes contained HMG2 levels similar to proliferating tissues (12 ug/mg DNA). Late spermatids did not contain HMGs. Somatic Sertoli and Leydig cells (2 ug/mg DNA) exhibited HMG2 levels similar to nonproliferating tissues. HMGs synthesized in spermatogonia and spermatocytes had similar specific activities, but early spermatids did not synthesize HMGs. Germ cells also contained an HMG2 species (on acid-urea gels) not found in somatic tissues. Other investigators have shown that HMGs may be associated with transcriptional or replicative processes. Thus, it is proposed that HMG2 plays a role in modulatable gene expression, while HMG1 is associated with housekeeping functions.^ HI histone variants were also studied throughout spermatogenesis. The minor somatic variant, HIa, is the predominant variant in spermatogonia and early primary spermatocytes. In early pachytenes, the testis-specific variant, HIt, is first synthesized and appears, largely replacing somatic variants HIbcd and e by late pachytene stage. Early spermatids contain the same HI composition as pachytenes, but do not synthesize HI histones. HI('0) is present in low amounts in all germ cells. These results suggest that expression of HI variants is developmentally controlled.^

Identificador

http://digitalcommons.library.tmc.edu/dissertations/AAI8325113

Idioma(s)

EN

Publicador

DigitalCommons@The Texas Medical Center

Fonte

Texas Medical Center Dissertations (via ProQuest)

Palavras-Chave #Biology, General
Tipo

text