3 resultados para Probability density function

em DigitalCommons@The Texas Medical Center


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we will present a model that describes how the number of healthy and unhealthy subjects that belong to a cohort, changes through time when there are occurrences of health promotion campaigns aiming to change the undesirable behavior. This model also includes immigration and emigration components for each group and a component taking into account when a subject that used to perform a healthy behavior changes to perform the unhealthy behavior. We will express the model in terms of a bivariate probability generating function and in addition we will simulate the model. ^ An illustrative example on how to apply the model to the promotion of condom use among adolescents will be created and we will use it to compare the results obtained from the simulations and the results obtained by the probability generating function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of the brain and its underlying circuitry is dependent on the formation of trillions of chemical synapses, which are highly specialized contacts that regulate the flow of information from one neuron to the next. It is through these synaptic connections that neurons wire together into networks capable of performing specific tasks, and activity-dependent changes in their structural and physiological state is one way that the brain is thought to adapt and store information. At the ultrastructural level, developmental and activity-dependent changes in the size and shape of dendritic spines have been well documented, and it is widely believed that structural changes in spines are a hallmark sign of synapse maturation and alteration of synaptic physiology. While changes in spine structure have been studied extensively, changes in one of its most prominent components, the postsynaptic density (PSD), have largely evaded observation. The PSD is a protein-rich organelle on the cytoplasmic side of the postsynaptic membrane, where it sits in direct opposition to the presynaptic terminal. The PSD functions both to cluster neurotransmitter receptors at the cell surface as well as organize the intracellular signaling molecules responsible for transducing extracellular signals to the postsynaptic cell. Much is known about the chemical composition of the PSD, but the structural arrangement of its molecular components is not well documented. Adding to the difficulty of understanding such a complex mass of protein machinery is the fact that its protein composition is known to change in response to synaptic activity, meaning that its structure is plastic and no two PSDs are identical. Here, immuno-gold labeling and electron tomography of PSDs isolated throughout development was used to track changes in both the structure and molecular composition of the PSD. State-of-the-art cryo-electron tomography was used to study the fine structure of the PSD during development, and provides an unprecedented glimpse into its molecular architecture in an un-fixed, unstained and hydrated state. Through this analysis, large structural and compositional changes are apparent and suggest a model by which the PSD is first assembled as a mesh-like lattice of proteins that function as support for the later recruitment of various PSD components. Spatial analysis of the recruitment of proteins into the PSD demonstrated that its assembly has an underlying order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myxococcus xanthus is a Gram-negative soil bacterium that undergoes multicellular development when high-density cells are starved on a solid surface. Expression of the 4445 gene, predicted to encode a periplasmic protein, commences 1.5 h after the initiation of development and requires starvation and high density conditions. Addition of crude or boiled supernatant from starving high-density cells restored 4445 expression to starving low-density cells. Addition of L-threonine or L-isoleucine to starving low-density cells also restored 4445 expression, indicating that the high-density signaling activity present in the supernatant might be composed of extracellular amino acids or small peptides. To investigate the circuitry integrating these starvation and high-density signals, the cis- and trans-acting elements controlling 4445 expression were identified. The 4445 transcription start site was determined by primer extension analysis to be 58 by upstream of the predicted translation start site. The promoter region contained a consensus sequence characteristic of e&barbelow;xtrac&barbelow;ytoplasmic f&barbelow;unction (ECF) sigma factor-dependent promoters, suggesting that 4445 expression might be regulated by an ECF sigma factor-dependent pathway, which are known to respond to envelope stresses. The small size of the minimum regulatory region, identified by 5′-end deletion analysis as being only 66 by upstream of the transcription start site, suggests that RNA polymerase could be the sole direct regulator of 4445 expression. To identify trans-acting negative regulators of 4445 expression, a strain containing a 4445-lacZ was mutagenized using the Himar1-tet transposon. The four transposon insertions characterized mapped to an operon encoding a putative ECF sigma factor, ecfA; an anti-sigma factor, reaA; and a negative regulator, reaB. The reaA and the reaB mutants expressed 4445 during growth and development at levels almost 100-fold higher than wild type, indicating that these genes encode negative regulators. The ecfA mutant expressed 4445-lacZ at basal levels, indicating that ecfA is a positive regulator. High Mg2+ concentrations over-stimulated this ecfA pathway possibly due to the depletion of exopolysaccharides and assembled type IV pili. These data indicate that the ecfA operon encodes a new regulatory stress pathway that integrates and transduces starvation and cell density cues during early development and is also responsive to cell-surface alterations.^